Linux/Open Source and Cloud computing
Wim Coekaerts
Senior Vice President, Linux and Virtualization Engineering

Monday, May 9, 2011
NIST Definition of Cloud Computing

Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.

This cloud model promotes availability and is composed of:

5 Essential Characteristics
- On-demand self-service
- Resource pooling
- Rapid elasticity
- Measured service
- Broad network access

3 Service Models
- SaaS
- PaaS
- IaaS

4 Deployment Models
- Public Cloud
- Private Cloud
- Community Cloud
- Hybrid Cloud

Source: NIST Definition of Cloud Computing v15
SaaS, PaaS and IaaS

- **Software as a Service**: Applications delivered as a service to end-users over the Internet
- **Platform as a Service**: App development & deployment platform delivered as a service
- **Infrastructure as a Service**: Server, storage and network hardware and associated software delivered as a service
Evolution of Private and Public Clouds

Private Cloud Evolution

Silo’d
- Physical
- Dedicated
- Static
- Heterogeneous
- HPC / Cluster
- Scale out

Grid/Virtualization
- Virtual
- Shared services
- Dynamic
- Standardized appliances
- Consolidate

Consolidate Standardize

Consolidate

Private PaaS

Private IaaS
Evolution of Private and Public Clouds

Private Cloud Evolution

Silo’d
- Physical
- Dedicated
- Static
- Heterogeneous
- HPC / Cluster
- Scale out

Grid/Virtualization
- Virtual
- Shared services
- Dynamic
- Standardized appliances
- Consolidate

Private Cloud
- Self-service
- Policy-based resource mgmt
- Chargeback
- Capacity planning
- Merged Silo/Grid
Evolution of Private and Public Clouds

Public Cloud Evolution

Private Cloud Evolution

Silo’d
- Physical
- Dedicated
- Static
- Heterogeneous
- HPC / Cluster
- Scale out

Grid/Virtualization
- Virtual
- Shared services
- Dynamic
- Standardized appliances
- Consolidate

Private Cloud
- Self-service
- Policy-based resource mgmt
- Chargeback
- Capacity planning
- Merged Silo/Grid
Evolution of Private and Public Clouds

Public Cloud Evolution

Private Cloud Evolution

Silo’d
- Physical
- Dedicated
- Static
- Heterogeneous
- HPC / Cluster
- Scale out

Grid/Virtualization
- Virtual
- Shared services
- Dynamic
- Standardized appliances
- Consolidate

Private Cloud
- Self-service
- Policy-based resource mgmt
- Chargeback
- Capacity planning
- Merged Silo/Grid
Evolution of Private and Public Clouds

Public Cloud Evolution

Private Cloud Evolution

Silo’d
- Physical
- Dedicated
- Static
- Heterogeneous
- HPC / Cluster
- Scale out

Grid/Virtualization
- Virtual
- Shared services
- Dynamic
- Standardized appliances
- Consolidate

Private Cloud
- Self-service
- Policy-based resource mgmt
- Chargeback
- Capacity planning
- Merged Silo/Grid

Hybrid
- Federation with public clouds
- Interoperability
- Cloud bursting

Monday, May 9, 2011
Linux Evolution

- **General Purpose OS**
 - Linux runs on small/medium/large systems and continues to evolve. More CPU’s, more memory, higher performance...

- **Embedded Linux**
 - Focus on Embedded market, handheld, tablets but there’s similarities with cloud / virtualization. Special Linux kernel build and custom Linux OS distributions

- **Linux-based Appliances**
 - Minimal install, easy to package and repackage Linux distribution to deploy apps on for virtualization and cloud deployments. Based on general purpose Linux but with ideas from embedded world
Our efforts on Linux

- Work on Linux scalability - as a hardware company we have very large x86 systems 128-160 threads 1-2TB memory. NUMA awareness, high speed network, flash disk, tracing, fault management, filesystems (btrfs) ... products like ExaData and ExaLogic

- All - our code changes go into the mainline tree (Linus’s tree). Our Oracle Linux source trees are also publicly available including changelogs:
 http://oss.oracle.com/git/?p=linux-2.6-unbreakable.git

- Create packages to make packaging of Linux-based assemblies or appliances easy and reproducible. This includes easy configuration of application installation on top as well. This work comes in Oracle VM Templates with Oracle Linux (freely downloadable including source).

- Make Linux into a better virtualized OS - projects like zcache and ramster.
Open Source Virtualization

- **Hypervisors**: True hypervisor concept - Xen most well known version of open source hypervisor used in many production systems today.

- **OS with hypervisor characteristics**: Ability to run VMs on top of a host kernel, like KVM or Oracle VM VirtualBox.

- **Container style**: Form of virtualization where you isolate processes and applications from each other on top of a single OS kernel. OpenVZ, LXC
Our efforts on Xen and Oracle VM VirtualBox

- Contrary to popular believe, the Linux tree has full support for Xen. For Xen guest as well as Xen privileged (dom0) domains. We worked Citrix and the Xen community to get the code submitted and in acceptable form for Linus.

- All our code changes go into the mainline tree (Xen.org Xen tree).

Linux 2.6.39 rc6:
config XEN_DOM0 (including pciback, netback and blockback coming)
config XEN
config XEN_PVHVM
config XEN_MAX_DOMAIN_MEMORY
config XEN_SAVE_RESTORE

- Oracle VM VirtualBox and Oracle VM Server (Xen-based) are both complete open source Virtualization products. Free download source + binaries and production use.
Open Standards - or the need for Open Standards is important

Packaging format for appliances (OVF)

OVF is a good start to have a common format of describing a set of VMs that work together. Assemblies with configuration metadata. In DMTF

Cloud API

Many clouds but other than de facto standards no true standard yet. Oracle submitted a proposal to DMTF in 2010

Application and OS Configuration

Above OVF

startup scripts (first boot)
cleanup scripts (clean virtual disks, swap space, temp files, reset to first boot state)
Helping open standards along

• We provide support for OVF in both Oracle VM VirtualBox (first to implement support) and Oracle VM server
• Work with the DMTF to suggest enhancements and propose additions to the OVF standard to fit complex application configuration
• Use OVF in our own assembly builder products (Oracle Virtual Assembly Builder) and support for OVF in our management products

• Oracle Cloud API submission and feedback forums

• Enhance Oracle products such as MySQL, and many others to be easily deployed in a cloud environment (optimized, preconfigured MySQL/Oracle Linux template on Oracle VM)
Oracle VM Templates
Rapid Application Deployment

E-Delivery

Download from Oracle

- Pre-built, pre-configured VM
- Complete app, middleware, DB installation
- Complete MySQL, Siebel, Database 11g, Enterprise Manager...

Import via Oracle VM

Customize & Save as Golden Images

Save days or weeks in installation and configuration time

Start-Up in Oracle VM Pool

Oracle VM Server Pool

NAS, SAN, iSCSI

Siebel CRM VM 1
Siebel CRM VM 2
VM
VM
VM
VM

Monday, May 9, 2011
Oracle Virtual Assembly Builder

- **Package** up complex structure from dev/test and reconstitute in production
- **Minimize setup time and risk** of hard-to-debug configuration errors
- **Easily replicate** in production with minor variations
- Each production instance has **well-contained configuration** parameters for flexibility
Oracle’s Software Development Cloud - “Devops”

Nearly Ten Years Development / Use

• Internal **hardware resource management** application leveraging existing development automation as a ‘private cloud API’

• A platform allows us to move more users & hardware resources into a **self-service ‘cloud’**

• A **self-service reimage** and reboot portal for users

Current Metrics

- Avg. new **VM reservations** per day: ~50
- Avg. **self-service reboots** per day: ~25
- Avg. **self-service reimage** per day: ~100

That is not limited to a single: OS imaging technology, hypervisor, or cloud API
What’s next

• For developers
 • it’s important to work together and create tools based on open standards, participate and implement open standards
 • Interoperability should be in the design
 • Small footprint is ‘in’, disk and memory size matters

• For businesses, to make clouds work
 • it’s more than just virtualization
 • think about full stack deployment and how all components interact
 • save on sysadmin and application admin costs