Eliminating Silent Data Corruption with Oracle Linux

Martin K. Petersen, Linux Kernel Developer
Sergio Leunissen, Sr. Director
The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.
Oracle Linux - History

- Launched at Oracle Open World in 2006
- Compatible with Red Hat Enterprise Linux
- Freely available source and binaries
- Oracle offers Linux support for RHEL and Oracle Linux
- Oracle’s base Linux development platform
- Oracle does not use or test on RHEL
- Customers can switch in minutes – no reinstall needed
- Applications run unchanged
- No Red Hat compatibility bug has ever been reported to Oracle
More Than 5,500 Customers Use Oracle Linux
Oracle: Enhancing Linux for Mission Critical Use

- Linux kernel maintainers at Oracle
- All work submitted to mainline kernel
- Focus on datacenter use of Linux

"Oracle's development work for the Linux kernel represents vital contributions to the open source community, which benefit anyone using Linux."

– Andrew Morton, Linux Kernel Maintainer, Google
New: The Unbreakable Enterprise Kernel

- Fast, modern, reliable and optimized for Oracle
- Used by Exadata and Exalogic for extreme performance
- Allows Oracle to innovate without sacrificing compatibility
 - Oracle Linux now includes both the Unbreakable Enterprise Kernel and our existing Red Hat Compatible Kernel
 - You choose at boot time: a system optimized for running Oracle software or strict Red Hat compatibility.

Oracle now recommends only the Unbreakable Enterprise Kernel for all Oracle software on Linux
Silent Data Corruption

- Data corruption that goes unnoticed
 - No errors or warning
- Logical block checksum checking not enough to prevent silent data corruption
 - Often used at READ time, when it’s already too late
- Requires end-to-end integrity checking to detect
- There are areas in the data path that can cause corruption
- End-to-end data protection prevents bad data from being written
Potential Data Integrity Problems

- **Hardware**
 - Memory, CPU, disk

- **Firmware**
 - RAID controller, disk

- **Software**
 - I/O Driver
 - OS: VM, block layer

Software and hardware components in the I/O stack
The Impact of Silent Data Corruption

- System downtime
- Lost revenue
- Lack of regulatory compliance
 - Gramm-Leach-Bliley Act (GLBA)

Average financial impact per hour downtime by industry

Source: Gartner Group & Contingency Planning Research, Inc.
Silent Data Corruption: How Common Is It?

• NetApp, Univ. of Wisconsin, and Univ. of Toronto study¹
 – 41 month period
 – More than 1.5 million SATA and enterprise class fibre channel drives

• Silent data corruption detected:
 – 3,078 SATA drives
 – 760 fibre channel drives

• CERN study, 2007²
 – Write known data patterns to more than 3,000 nodes
 – 5 week period
 – 22 out of 33,700 files (8.7TB) corrupt
 – Nearly 1 in 1500 files

2) http://indico.cern.ch/getFile.py/access?contribId=3&sessionId=0&resId=1&materialId=paper&confId=13797
Data Integrity Timeline

- **2001**: Oracle launches Hardware Assisted Resilient Database (HARD) initiative
- **2003**: ANSI T10 Protection Information approved
- **2006**: Emulex and Oracle start research into enhanced data integrity
- **2007**: Data Integrity Initiative (DII) is announced by Emulex, LSI, Oracle, and Seagate at SNW with private demonstration of End-to-End Data Integrity
 - Establishment of the SNIA Data Integrity Working Group
- **2008**: Oracle’s Data Integrity Enhancements accepted in Linux 2.6.27 Upstream kernel
 - Emulex and Oracle announce Enterprise-Class Data Integrity Early Adopter Program
- **2010**: Emulex and Oracle introduce world’s first operating system and HBA supporting End-to-End Data Integrity
Industry First: Application-to-SAN data integrity on Linux

- Emulex LightPulse® HBA with BlockGuard + Oracle Unbreakable Enterprise Kernel
- Implements T10 PI Model and Oracle's Data Integrity Extensions (DIX)
- Protects against data corruption in the software stack and HBA
- Support for Oracle Database (10gR2, 11gR1, 11gR2) using ASMLib
- Transparent to application
Data Integrity

Preventing Data Corruption with DIX and T10 DIF
Emulex LightPulse LPe1200x Fibre Channel HBA

- 8 Gbps Fibre Channel host adapter
- PCI Express 2.0
- BlockGuard:
 - T10 Protection Information Model
 - Oracle Data Integrity Extensions
Typical I/O Stack

- Application
- OS
- I/O Controller
- SAN
- Disk Array
- Disk Drive
- Byte stream
- 512 byte sector
- 512 byte sector
- 512 byte sector
- 512 byte sector
- 8 byte PI
- 520 byte sector
- 8 byte PI
- Xport CRC
- Sector ECC
Typical I/O Stack

Application-specific data integrity measures such as file format or block checksums.
Typical I/O Stack

OS has pointer checks and file or device access controls

Application

Byte stream

OS

512 byte sector

I/O Controller

512 byte sector

SAN

512 byte sector

Disk Array

512 byte sector

8 byte PI

Disk Drive

520 byte sector

8 byte PI

Sector ECC

Xport CRC
Typical I/O Stack

Server hardware and I/O controller hardware support ECC or parity

Application

OS

I/O Controller

SAN

Disk Array

Disk Drive

Byte stream

512 byte sector

512 byte sector

512 byte sector

512 byte sector

520 byte sector

8 byte PI

8 byte PI

Xport CRC

Sector ECC
Typical I/O Stack

SAN may use a transport frame CRC
Disk array controllers frequently store 8 bytes of internal information in addition to the 512 bytes of user data per block.
Typical I/O Stack

However, the disk drive has no knowledge about what is stored in those 8 extra bytes and considers them part of the data.
Typical I/O Stack

Disk drive adds an internal ECC to protect all 520 bytes per block.
T10 Protection Information Model

- Standardizes those extra 8 bytes
- Prevents content corruption and misplacement errors
- Protects path between HBA and storage device
- Protection information is interleaved with data on the wire, i.e. effectively 520-byte logical blocks
T10 Protection Information Model

Application → Byte stream

OS → 512 byte sector

I/O Controller → 520 byte sector | 8 byte PI

SAN → 520 byte sector | 8 byte PI

Disk Array → 520 byte sector | 8 byte PI

Disk Drive → 520 byte sector | 8 byte PI

Xport CRC

Sector CRC
T10 PI allows multiple components to exchange and verify protection information.
T10 Protection Information Model

T10 PI does not protect the top of the I/O stack

- Application
- OS
- I/O Controller
- SAN
- Disk Array
- Disk Drive
- Byte stream
- 512 byte sector
- 8 byte PI
- 520 byte sector
- 8 byte PI
- 520 byte sector
- 8 byte PI
- 520 byte sector
- 8 byte PI

Xport CRC
Sector CRC
Oracle Data Integrity Extensions

- Extends T10 PI all the way up to the application, enabling true end-to-end data integrity protection
- The Data Integrity Extensions (DIX)
 - Enable DMA transfer of protection information to and from host memory
 - Separate data and protection information buffers to avoid inefficient 512+8+512+8+512+8 scatter-gather lists
 - Provide a set of commands that tell HBA how to handle the I/O: Generate, Strip, Forward, Verify, etc.
Data Integrity Extensions + T10 PI

DIX facilitates protection information interchange with I/O controller and this enables Linux applications to send and receive checksums.
Data Integrity Extensions + T10 PI

When combined, DIX and T10 PI enable true end to end data integrity protection.
Preventing Data Corruption with DIX and T10 DIF
Preventing Data Corruption with DIX and T10 DIF

Application creates data in memory
Preventing Data Corruption with DIX and T10 DIF

Data

PI

ASM generates protection information
Preventing Data Corruption with DIX and T10 DIF

Linux kernel forwards data and protection information to Emulex HBA using DIX.
Preventing Data Corruption with DIX and T10 DIF

Emulex HBA verifies that data, protection information, and target location match.
Preventing Data Corruption with DIX and T10 DIF

Data + PI

Emulex HBA interleaves data and protection information and transmits 520-byte sectors to storage
Preventing Data Corruption with DIX and T10 DIF

Storage array controller verifies that data, protection information, and target location match.
Preventing Data Corruption with DIX and T10 DIF

Disk drive firmware verifies that data, protection information, and target location match
Preventing Data Corruption with DIX and T10 DIF

Successful I/O completion is reported to the application.
Mismatches detected by HBA, storage array, or disk drive will cause I/O to be aborted and the error is passed up the stack, preventing bad data from being written.
Protection information is also transmitted for read requests and ASM will verify I/O before signaling completion to the application.
Preventing Data Corruption with DIX and T10 DIF

Protection information exchange is dynamically negotiated. Protection is automatically enabled between application and HBA when using legacy storage.
What’s Available Today

Today

Oracle Application sends block with protection information to Emulex Adapter through Linux I/O stack

Emulex LightPulse LPe1200x HBA validates protection information

Oracle Database

Linux OS

HBA

2011

Emulex HBA sends data block with protection information across SAN to the array

Array validates protection information

Array sends block to drive. Drive firmware validates protection information before writing to media

Storage Array

Disk drive

Data Integrity Extensions

T10 PI

T10-PI

Oracle Applications sends block with protection information to Emulex Adapter through Linux I/O stack

Emulex LightPulse LPe1200x HBA validates protection information

Emulex HBA sends data block with protection information across SAN to the array

Array validates protection information

Array sends block to drive. Drive firmware validates protection information before writing to media

Application-to-Disk Data Integrity: current and future support
Resources

• **Oracle Linux Information**
 oracle.com/linux

• **Follow us on Twitter**
 [@ORCL_Linux](ORCL_Linux)

• **Free Download: Oracle Linux**
 edelivery.oracle.com/linux

• **Free Download:**
 – **Unbreakable Enterprise Kernel**
 public-yum.oracle.com

• **Data Integrity Project Information**
 oss.oracle.com/~mkp/