Data Integrity Infrastructure for Block I/O

Martin K. Petersen
Software Developer, Linux Engineering
Topics

- Data Corruption
- Industry Update (T10/T13, DIX, SNIA)
- Linux Data Integrity Infrastructure
- Future Work / Discussion
Data Corruption

• Tendency to focus on corruption while data is at rest
 • Media defects
 • Head misses

• However, corruption can happen while data is in flight
 • Modern transports like FC and SAS have CRC on the wire
 • Which leaves library / kernel / firmware errors
 • Bad buffer pointers
 • Missing or misdirected writes

• Industry demand for end to end checksumming
 • Oracle HARD is widely deployed
 • Other databases and mission-critical business apps
 • Nearline/archival storage wants belt and suspenders
Data Corruption - HARD/DIF/EPP

- Orthogonal to logical block checksumming
 - We still love you, btrfs!
 - Logical block checksumming is detected at READ time
 - ... which could be months later
 - Redundant copy may also be bad if buffer was incorrect

- This is about:
 - Proactively preventing bad data from being stored on disk
 - ... and finding out before the original buffer is erased from memory
 - Plus using the integrity metadata for forensics when logical block checksumming fails

- It's an insurance policy. Must be cheap.
T10 Data Integrity Feature (DIF)

- Between initiator and target
- IMD interleaved with data sectors on the wire
- Three protection schemes
 - All have guard tag defined
 - Type 1 reference tag is lower 32-bits of target sector
 - Type 2 reference tag is seeded in 32-byte CDB
- SATA T13/EPP uses same tuple format
- SSC tape proposal is different (guard only)
Data Integrity Extensions

DIX + DIF
Data Integrity Extensions + T10 Data Integrity Field combined protection envelope

DIX
Data Integrity Ext. protection envelope

DIF
T10 Data Integrity Field protection envelope

HARD
Oracle HARD protection envelope

Normal I/O
vendor specific integrity measures
vendor specific integrity measures
vendor specific integrity measures
transport CRC
vendor specific integrity measures
vendor specific integrity measures

Application OS I/O Controller SAN Disk Array Disk Drive

ORACLE®
Data Integrity Extensions

- Separate protection scatter-gather list
 - 520-byte sectors are inconvenient for the OS
 - A <512, 8, 512, 8, 512, 8, ...> scatterlist is also crappy

- DIF tuple endianness
 - Application tag must be portable across little- and big-endian systems

- Checksum conversion
 - CRC16 is somewhat slow to calculate
 - IP checksum is cheap
 - Strength is in data and integrity metadata buffer separation
 - CRC32 in Nehalem
 - Extra tags / protection schemes
DIX Operations

<table>
<thead>
<tr>
<th>READ</th>
<th>OS</th>
<th>Controller</th>
<th>Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ_INSERT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ_STRIP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ_PASS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ_CONVERT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WRITE			
WRITE_INSERT			
WRITE_STRIP			
WRITE_PASS			
WRITE_CONVERT			
T10 DIF + Data Integrity Extensions

• Proof of concept last summer
 • Oracle DB, Linux 2.6.18, Emulex HBA, LSI array, Seagate drives
 • Error injection and recovery
• Product availability
 • Hardware shipping, firmware TBA
 • Emulex, LSI, Seagate, Hitachi
SNIA Data Integrity Technical WG

- Provisional TWG
- Aims to broaden participation
- Aims to standardize data integrity terminology
 - Think RAID levels
- Aims to standardize OS-agnostic API and/or common methods for applications to interact with integrity metadata
- Companies at first face 2 face
 - Emulex, Oracle, LSI, Seagate, Qlogic, Brocade, EMC, PMC Sierra, HP, Teradata, IBM, Sun, Microsoft, Symantec
What Is Now?

- SNIA is obviously a long-term effort
- “Verbatim” DIF exchange via DIX is pretty much good to go
- Linux infrastructure ready from block layer down
- Aiming for 2.6.26
- SCSI changes depend on block ditto
Linux Block Layer Changes

- **struct bio**
 - Integrity `bio_vec` + housekeeping hanging off of `bio`
 - Submitter can attach it
 - Or block layer can auto-generate on WRITE
 - Block layer can verify on READ
 - Integrity metadata opaque to block layer
- **struct block_device**
 - Has an integrity profile that gets registered by ULD
 - Layered devices must ensure all subdevices have same profile
- **struct request**
 - A few merging constraints
 - IMD ordering is important
SCSI Layer Changes

- Mid level
 - INQUIRY and READ CAPACITY(16) during scan
 - Extra scsi_data_buffer in scsi_cmnd
 - Integrity scatter-gather mapping
- sd.c
 - CDB prep
 - A few knobs that HBA drivers can use to select DIX operation
 - Block integrity profile registration
Future Work / Discussion

- Filesystem / page cache interface
 - Where to pin? address_space? struct page?
 - FS application tag usage

- Userland API requirements:
 - Explicit
 - mkfs/fsck accessing DIF on block device directly
 - Opaque
 - “protect this buffer”
 - Transparent
 - standard read()/write() style calls
 - mmap() => bonghit bonanza
Application / OS Challenges

Oracle + ASM

App. + libdif

App. + libintegrity

Future normal I/O

Normal I/O

Application | Page cache | Filesystem | Block layer | SCSI layer | I/O Controller

Guard tag | Application tag | Reference tag

Remapping / conversion
More Info

 - Documentation
 - DIX specification
 - Patches
 - Source repository