T10 Data Integrity Feature (Logical Block Guarding)

Martin K. Petersen
Software Developer, Linux Engineering
Topics

• Common Data Integrity Errors
• T10 Data Integrity Feature
• SCSI Layer Changes
• Block Layer Changes
• Performance Implications
• Discussion
Common Data Integrity Errors

- Misdirected writes
- Writing incorrect data
- On-the-wire corruption
- This actually happens in the field! Really!
- Allowing the storage device to verify data integrity before clobbering potentially good sectors
- Oracle's HARD
T10 Data Integrity Feature (DIF)

- Originally proposed by IBM
- Logical Block Guarding is one component of DIF
- SBC-3 / SPC-4
- 520 byte sectors with a twist
- 8 bytes of protection data per sector
- GUARD tag : CRC
- REFERENCE tag : Typically LBA
- APPLICATION tag : User defined content
T10 DIF – Tags

• **GUARD tag (Logical Block Guarding):**
 • 16-bit CRC covering the hardware sector
 • Regardless of sector size
 • 4096 KB sectors appear only to gain momentum in lower end (SATA)

• **REFERENCE tag (Misdirected writes):**
 • 4 bytes – depend on protection type
 • For Type 1 protection, REF tag contains lower 32 bits of LBA
 • For Type 2 protection, REF tag has to match LBA in CDB + N
 • Wraps at 2TB with 512 byte sectors, 16TB with 4KB
T10 DIF – Tags continued

- APPLICATION tag (Up for grabs):
 - 2 bytes per sector
 - Ownership negotiated with target
 - How do we provide this in a sensible way?
 - Per sector or per I/O?
 - Use it to flag metadata vs. data?
 - Ideas?
T10 DIF – Device Protection Types

• Type 0:
 • No checking but target device must generate on WRITE

• Type 1:
 • GUARD + REF checking (LBA)

• Type 2:
 • GUARD + REF checking (Extended Indirect LBA)
 • READ(32)/WRITE(32) only

• Type 3:
 • GUARD tag
T10 DIF – Device Capabilities

- Device can support one or more protection types
- Target can only be formatted with one protection type at a time
- RDPROTTECT/WRPROTECT/VRPROTECT must match target format somewhat
- READ(32)/WRITE(32) feature special DIF knobs
- APP tag ownership/verification
T10 DIF – Host Board Adapters

• DIF is a standard for communication between initiator and target

• Some HBAs will likely use DIF transparently to OS:
 • INQUIRY/READ_CAPACITY(16) mangling

• Some may allow getting protection data from OS:
 • Allowing OS to submit a buffer with protection data included
 • Tag validity mask

• Some may allow DMA of protection data to OS:
 • Allowing OS to retrieve tags, including APP tag
T10 DIF – Protection Capabilities

• Protect all the way from filesystem to disk

• Which tags to supply are optional:
 • mount -o reference_tag
 • mount -o guard_tag

• If HBA is capable we can even protect path between OS and HBA with legacy storage devices

• Maybe even support DIF on legacy disks as long as they have 520 byte sector support (Academic Exercise)
SCSI Layer Changes

• Not very intrusive, except for sd.c CDB creation
• Error handling adapted to handle DIF-specific Additional Sense Codes + Qualifiers
• Distinguishes between HBA and target verification failures
• scsi_host mask to set HBA capabilities
• scsi_disk field to identify protection format
Block Layer Changes

- Propose a callback function which will calculate CRC and set APP + REF tags on a bio according to a tag mask
- \texttt{bio_prot} is a list of \texttt{bio_vecs}, mirroring the data vector
- “Protect this BIO if you can”
- Not SCSI-specific
- Filesystem doesn't have to be device capability aware
Block Layer Changes

• Will even work in case of RAID1 consisting of DIF and legacy disks
• But not with different sector sizes
• Merging of requests with mismatched bio_prot

Idea:
• Need a way to communicate APP tag storage capability
• Add a BH_Protect (BH_Integrity?) flag to buffer_head?

• Virtualization
Performance Implications

- CRC is somewhat expensive. 200-300 MB/s on a modern CPU
- Looking into ways to optimize
- SSE4 will have a CRC instruction (any poly)
- Protection data: 4KB page of protection data per 256KB of I/O