
Wim Coekaerts
Oracle

Engineered Systems with
Linux

Agenda

• System / Datacenter trends
• What are engineered systems?
• What did we learn using Linux on E.S.?

Mission

• Help/participate in making Linux the best kernel
• You’re never really done
• Better than it already is
• Not just development, also testing/QA

• Help customers run their business efficiently
• Understand the trends
• Be able to remain current (and relevant)

• New hardware support, larger systems

Trends and changes in datacenter deployments

• Virtualization changes OS deployments
• Change from creating an OS VM to Virtual

Appliances
• Pre-packaged application VMs
• Hosted applications
• OS hidden (invisible not irrelevant)
• Kernel important, OS distribution less important
• Relatively small – medium sized VMs for now
• Be a good guest kernel, be a good host kernel/

hypervisor

Trends and changes in datacenter deployments

•  Large physical server deployments
• Big boxes are back
• More RAM, more cores, more everything
•  x86 is not just your 1 or 2 socket boxes any more

•  even 1 socket systems are more powerful
• OS on larger systems needs to handle much more

complex scenarios, workloads. Different algorithms.
• Kernel is ‘in’ again. Scheduler, resource

management, IO layer, network layer, NUMA
support, irq balancing etc

Trends and changes in datacenter deployments

• Use your building blocks
• Companies with engineers and admins wanting full

control and literally build out everything themselves
• OK if you have the knowledge and resources to do

so
• Decisions, decisions, decisions
• Build your own plane

• Which OS version
• Which storage arrays
• Which servers
• Do they work well together for my workload?
• Who tested this exact configuration?

Trends and changes in datacenter deployments

•  Just buy the whole thing
• Physical appliance or engineered system
• Buy the plane
• Hardware and software together

• Tested together
• Storage, network, OS, drivers,
 applications
• Both small and large systems
•  *still* built using the same building
 blocks (doesn’t imply lock-in)

Engineered Systems

• We were looking at building the biggest, meanest,
fastest database server on x86 out there
• Using Linux

• Figure out how to get the absolute
 best performance
•  Distribution part is simple

• We need like 150 or so RPMs
• How to get the kernel to scale

• This was a 1.5 year effort

Example Systems

System Config 1
•  9 racks of hardware
•  2376 cores
•  1512 disks (2.3 PB raw storage)
•  48TB of Flash/SSD
•  6.9TB RAM

System Config 2
•  8 socket (160 threads)
•  4 TB ram
•  16000 luns

Lessons learned

• Effort started with a 2.6.18 based tree but…
• Current hardware really needs a current kernel
• Backporting patches has a ton of drawbacks

• Re-test code as if it was new
• Some one already wrote it, and you have to rewrite

it yet again
• You’re moving things written against, sometimes

significantly different code
• Can’t backport big architecture changes

• So we moved to using a stable mainline kernel 2.6.32
first, now we’ve moved on to, really, 3.0.4

Lessons learned

Lessons learned

• Power management support
• CPU features (GB hugepages, hardware CRC. Etc)
•  Interrupt infrastructure
• MCElog, hardware memory poisoning
• Network + IO subsystems have gotten a lot better
• Multi-queue IO support
• Perf code helped a lot to tune
• Using GIT and mainline trees makes it so much easier

to hunt down bugs, fix regressions and keep a solid
history.

Lessons learned

• We were able to do months of testing with full system
configurations under 100% load
•  80,000+ hours of QA/day
• Find regressions and bugs, fix them, submit them
• Features to help scaling like lockless wake-up path,

IPC semaphore changes, IO affinity latency changes

Lessons learned

•  5 years ago gregkh said “distributions should be using
mainline stable trees”… he was right
• Using a stable mainline tree and update more regularly

instead of backporting helps everyone
• Helps us be current
• Reduces somewhat wasted backporting efforts
• Any bugs we find and fix are relevant to everyone
• Helps us find mainline regressions now, not 3 years

from now
•  Just publish a public git repo with our kernel source

and anyone can dig into it and figure out what
changed, why, and immediately pull in from mainline to
move forward

