PostgreSQL 8.1.0 Documentation

The PostgreSQL Global Development Group



PostgreSQL 8.1.0 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2005 The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2005 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCI-
DENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HERE-
UNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.



Table of Contents

Preface XXXV
1. What 1S POStZIESQLT ..ccuviiiiiiiiiieeeteeet ettt sttt e XXXV
2. A Brief History of PoStreSQLu.....cc.ciiiiiiriiiiiiiiieiieie ettt ettt s veesseeseaesbeesseenane e XXXVi

2.1. The Berkeley POSTGRES Project ......cceeeieviiiniienienieeiteneeeteeieesete st siee e XXXVi
2.2, POSEEIESOS ...ttt sttt ettt sttt at e st e e bt esareebeebeesene XXXVii
2.3, POSEEIESQLou. ittt sttt ettt s sttt st e b nbe e sateebeebeesene XXXVii
3. CONVENTIONS ...ttt ettt ettt ettt et et et be sttt e bt et saeestesbeesseaesbeesne bt eneenbesueennens XXX Vil
4. Further INfOrmation ..........covviiiiiiriiiiieieeie ettt ettt st et et esateebeenbee e XXXViii
5. Bug Reporting GUIAEIINES. .......cooueeriiiriiiiieiie ittt sttt sttt e st s be e e saeesabeesbeenaee e XXXiX
5.1, Tdentifying BUZS .......oovieiiiiiiiieeee ettt st sttt s n XXXiX
5.2, WAL £ TEPOTL...uuteeuiieiieiieeieeiteeite ettt ettt et sat e et e st e st st e bt e s it e sabeesbeesaeesaneen XXXiX
5.3. WHETe 1O TEPOTE DUZS ...eeeuviiiieiiiiiieniteeie ettt ettt ettt et et sat e st e bt e bt e sabeebeenaee s xli
I. Tutorial 1
L. GENG STATTEA ...coeeeieeiieiieeiieeee ettt et st s b e e a e eaeesnesaeenesnens 1
I R 63T 7 1 U o) PSRRI 1
1.2. Architectural FUndamentals............ccoccuieeiiieiiiieiieeeie et 1
1.3. Creating @ Database ...........cecueiuieuieiiieieeiere ettt ettt ettt ettt et sttt e sae et ete e ens 2
1.4. AcCesSING @ DAtabase ........coueeiuiruieiieiieieite ettt ettt ettt ettt st sbeene 3
2. The SQL LaNZUAZE .......oouieieiieiiete ettt ettt ettt ettt ettt st et be e st e e sbe et e sbe et enbesaeenbenaeans 6
B T § 4 (o7 L1 ot o) LTRSS 6
2.2 CONCEPLS ...eneeeeeiteteettete et ete st eet et s bt et e b e e bt et e bt e st e sbesa e e beebeen s e bt esee bt sbeentenbeeaeenbeebeeneeneeene 6
2.3. Creating @ NeW TabIe .......cccoiiiiiiiiieieie ettt 6
2.4. Populating a Table With ROWS .......cccoeiiiiiiiiiiiiiieee et 7
2.5. QUErYING @ TADIE ....oueiiiiiiiiiiiiieeee ettt bbb 8
2.6. J0Ins BetWeen Tables. .......cccoiiiiiiiriiieieiesieeteest ettt 10
2.7. AgEregate FUNCHIONS......ccccevuiiiiieieriteteeeete ettt ettt sttt ebe e e 12
2.8 UPAALES ...ttt ettt ettt ettt ettt st b e bttt ebe et bbb bbb e b enaes 14
2.9, DIETIONS ...ttt ettt ettt ettt ettt st e b e ebt et sbe e tesbe et e b e eb b et sbeenaesbeeneen 14
3. AdVANCEA FRATUIES ...cuiiiiiiiiiiiiciieiiete ettt sttt st sbe e sbeeneen 16
3.1 INEEOAUCTION «.nveiiiniiiiciceicetcet ettt ettt ettt et sttt sbe e e saeenees 16
3.2 VIBWS ittt ettt ettt ettt st h et e be et s a et b ettt ebe et saeennen 16
3.3, FOTEIZN KRYS...uiitiiiiiieiieiiecieeee ettt ettt ettt sat e b e s bt e st e sabeeseesaeesaseensaenseenas 16
3.4, TIANSACHIONS ..c.eevtenieiietiettete ettt ettt ettt ettt st e e b e ees et eaeenaesaeess e besbn et e sbeeneesueeneen 17
3.5, INHETILANCE ..ottt st sbe e e 19
3.6, CONCIUSION ...ttt sttt ettt ettt ettt ettt eb e eaee e saeess e b e san et e sbeennesaeennen 21

I1. The SQL Language 22

A SQL SYNEAX 1euuttetteeiteete ettt ettt e st e st et e bt e st e sa bt e bt e sbtesat e e bt e bt e sht e et e e bt e sheeea bt e be e bt e sateenbeenbee e 24

4.1, LeXiCal STIUCIUTC.......cccuvieieieeeiieeeiieeetee e teeestee e teeetbeessaeesaeeessseeessseeessseeansseesssseessseens 24
4.1.1. Identifiers and Key Words.........ccocooviiriiniiiniiniinieieeeetc et 24
1.2, CONSLANTS ... .eeeiiieeerieeiieeeiteeeteeesteeesreeessseeesseeasseesseaessseeessseeessseesssseessssessnssennn 25
4.1.2.1. StriNG CONSLANLS ..veeveeriiieiieniienieeieenite ettt eseeeste st eseeesaeesateenbeesaeesaeeen 25

4.1.2.2. Dollar-Quoted String CONSLANLS .......cceereerrrienienierieenieeneesreenieenieenaeeas 26

4.1.2.3. Bit-String CONSLANES ......cc.eeivireieiireieiere ettt st 27

4.1.2.4. NUMETIC CONSLANTS .......coiviiiirieieiiieeetie et e eete e et e eeeeeeeeeeeeveeeeaaeeeeaeeean 27

4.1.2.5. Constants of Other TYPES ......cceveririereiieieniee et 28

iii



1.3, OPCTALOTS .c.ueeereeiieeteeeite et eteestte st e bt e sttesateebeesttesatesabeesbeesatessbeenseenseesasesseenseenns 29

4.1.4. SPECIial CharaCterS....cceuvtrieeriieriierieeitterite st ete et e site e bt esteesitesbeebeesseesabeenseesseenes 29
4.1.5. COMMENLS «...oueriiiiriiieiietceitetesie ettt ettt ettt et e s bt ettt e e sae e sesbesanesnesaeeane 30
4.1.6. Lexical PreCedence .......c..cocevueririeniinieiinieteniececreseeeere et 30

4.2, Value EXPIESSIONS.....eeiiiiriiieiieiiieitieete ettt sttt et sit e ettt e st e s it e sabe e beesaeesateenbeesaeesaseen 32
4.2.1. Column References...........occeeuererieniinieniinieieneeeeieeieeee et e 32
4.2.2. Positional Parameters........coc.eeveeriiiriiiniieniieieeieesite ettt st 33
4.2.3. SUDSCIIPES ..ttt ettt ettt et st e 33
4.2.4. Field SEIECHON .....eoviiiiiiiiiiieiteeie ettt ettt sttt sbee e 34
4.2.5. Operator INVOCAtIONS ........cceevuiriiiiiiieieieeeciere et 34
4.2.6. FUNCHON CallS ..c..eeiiiiiiiiiiiiicicee ettt ettt 34
4.2.7. Aggregate EXPIeSSIONS. .....coceiviiriiriiienitenieeieett ettt ettt et siee e saeesaee e 35
4.2.8. TYPE CASES .ttt ettt ettt ettt h e sttt e bt sttt e be e st e b e b e 35
4.2.9. Scalar SUDQUETIES.....c.ceererrirteieieiteiieienentesteteeteie st sttt et bt s s saeseenneneenesaeas 36
4.2.10. Array CONSLIUCLOTS ...uveiutiiieeieeniieeitentteniteeteestee sttt eteebeesieesbeesbeesseesaeeesaeesneenan 37
4.2.11. ROW CONSLIUCLOTS . ..ccuveeruiieteeieeriieeitentteniteeieesteesteesteebeesbeessseesseesseesareesseesseenan 38
4.2.12. Expression Evaluation RUles ..........cccoocoiiiiiniiiiiini e 39

5. Data DEIINITION ...cueetiiieieitieteete ettt ettt et b ettt st et s bt et e bt ebt et e sbeeneesbeeneen 40
5.1, TaDIE BASICS ...veeuieniiiieiieitee sttt sttt et et sttt b e b enees 40
5.2. Default ValUES .....cc.eeuiiriiriieiiniiiieiteeteet ettt ettt sbe e e 41
5.3, CONSIIAINES ...ttt sttt sttt ettt et ettt sb et e bt eb e et ebe e besbees b e b e st tenbeebeeneesbeeneen 42
5.3.1. Check CONSLIAINES .....cueruieiirieeierieeteieeitete ettt ettt et st sbe e 42
5.3.2. NOt-NUIL CONSIAINES ....coveenviieeniinieeiteienitete ettt ettt ettt b s e sbeene 44
5.3.3. UNIiQUE CONSLIAINES. ..cuvierureiiieieeniiesieeritesitesteesteesieessteeseeseessressseeseesseessesssesnses 45
5.3.4. Primary KEYS....ocuieouieriiiiieiiieitesite sttt sttt ettt ettt st et e s 46
5.3.5. FOT@IN KEYS ..couiiiiiieiieiie ettt ettt ettt ettt st e s eaaeenes 47

5.4, SYStEIM COIUMMNS ....uvieiieiieriiieieeitte sttt ettt st e st et e st e sabeesbeesseesasesnbeeseesaeesaseensaenseesas 49
5.5. MOAIfYINg TabIES......cccuiiriiiiiieiieitiesie ettt ettt ettt e st e st st eesaeesaeesaseensaensee e 51
5.5.1. Adding @ COIUMMN....cccuiiiiiiiieiieie ettt ettt st et be e st 51
5.5.2. RemMOVING @ COIUMI ...covuiiiiiiiiieniieiieeieeiee sttt ettt et sbe e s e 51
5.5.3. Adding @ CONSIIAINT ....cocueiriiiiieniieiieeiteite sttt et ettt et e teesbeesabesareennes 52
5.5.4. Removing @ CONSLIAINT ...eoveeriierieiieeieeiie ettt ettt ete e e sbeesee s 52
5.5.5. Changing a Column’s Default Value.........cccccoeveriiiniiniiniiiniieeeeeeeeee 52
5.5.6. Changing a Column’s Data TYPE ......ccceceeuimieiienirieienicreecceceeree e 53
5.5.7. Renaming @ COIUMN ........cc.ooiiiiiniiiiiiiniciieccescceeeee e 53
5.5.8. Renaming a Table .........cccciiiiiiiiiiiiiiiiceee e 53

5.6 PLIVIIEEES ..ottt e et 53
5.7, SCREIMAS ...ttt ettt ettt et b ettt b et st sbe e b e e 54
5.7.1. Creating @ SChema ........c.ccoiiiiiiiiiiiii e 55
5.7.2. The Public SChema ......cc.cooviiiiiiiiiiiiiieieeeee et 56
5.7.3. The Schema Search Path...........cccoooiiiiiiiiii e 56
5.7.4. Schemas and Privileges.........cooeiirieririeiieieeseee e 57
5.7.5. The System Catalog SChema ..........ccceiieiirieiiiieeeeee e 58
5.7.6. USAZE PALEINIS ...ttt sttt ettt st b et sbe e 58
577, POTtaDIIEY ..ottt 59

5.8, INHETILANCE ...ttt et st b e et ebe e e e sbe s 59
581 CAVRALS ...ttt ettt ettt bbbt sbe e 61

5.9, PArtItIONIIE ..eveeuieieeiietieteete sttt ettt ettt et ettt et b b et e bt e ae bt et e b e et s et e ebeeneesbeeneen 62



5.0.1. OVEIVIEW cveeeeeieieee ettt ettt eeette e e eeette e e e ee e e e e e e taaeeeeeentaaeeeeenstseeeeeetnseeeeennees 62

5.9.2. Implementing Partitioning ..........ccoecueeviierieniiniieeieerieeieeiee sttt 63
5.9.3. Partitioning and Constraint EXCIUSION .......cccuevverrieniiniieiiienieeieceeiee e 66

5.10. Other Database ODJECLS .......eecverruierieriierieenitenie et eriteste st et e site st sbe e bt esaeesareesseensee e 68
5.11. Dependency TraCKing..........cecueeieerieriieniieeniteeieeie ettt ettt st sae et st esbeenaee e 68
6. Data Manipulation.........cc.ceieeiiriiieriieeieneeteteecete ettt sn et ene e et saeennen 70
6.1. INSEItiNg DIAtA ......ooviiiiiiiiiiiiieeee ettt e 70
6.2. UPdating Data......c..cocueiieiiiiiieienceieeeeeee ettt st e 71
6.3. Deleting Data.......c..coviuiiuiiiiiieieieeeee ettt e s 72
T QUETICS ..vveeeuereeeitieeeiieeeteeeeeteeeeteeetteesstteeenseeesssaeessseeenssesasseeansseeansseesnseaeanseesansaeesseeensseessseesnssennn 73
T 1. OVEIVIBW ettt ettt ettt ettt et et e bt e s bt e e at e e bt e sbe e s bt e sab e e bt esstesateebeenseesaeean 73
7.2. TaDIE EXPIESSIONS ....c.eeeieeieiiitieieete ettt ettt ettt et et s bt et et eseeteese e e sbeentenbeeneeneeeneenes 73
7.2.1. The FROM ClaUSE......cccueiriiriieiteniienieeteeetee sttt ettt sttt st e b e smneeaeeenes 74
7.2.1.1. JOINEA TADIES ....oeetieiiiiieiiee et 74

7.2.1.2. Table and Column AIASES.........ccoereeriiruieiiniieiene e 77

7.2.1.3. SUDQUETIES «...veeneetieiieieeieee ettt ettt ettt sttt et enees 78

7.2.1.4. Table FUNCHONS .....eoviiiiriieiieiieteseeteeet ettt s 79

7.2.2. The WHERE ClaUSE.....ccueeuieiiriieienieeienteettete sttt sttt sttt ettt s 80
7.2.3. The GROUP BY and HAVING ClausSes.......ccceeveeruererienienieiinieeieneeteniesieeie e 81

7.3 SLECTE LISES. ..ttt ettt ettt b ettt st bt ettt sbe e 83
7.3.1. Select-LiSt TEIMS «..cc.eetiriiiiirieeiirieeteieetee sttt 83
7.3.2. ColumN LabeIS ...c..coiiiiriiiiiiiiiirieeieeetee ettt 84

T3 3. DISTINCT tuiuiiiieiereieettete sttt ettt sttt et ettt ettt e e ene b e 84

7.4, CombINING QUETIES.....ccrueriieririietinteeitete it etesteeit et etee e st et e s b st estesbeesaesbeestenbesbeensesbeenee 85
7.5, SOTHING ROWS .nveiiiieiieitesiie ettt ettt ettt ettt s e et st e st e sabesabe e baesaaesnteenseenanesnsean 85
7.6. LIMIT ANA OFFSETucuuiiiieiieiiiiiitieteteie ettt sttt sttt s st 86
8. DALA TYPES . uteeuteeiieriieete ettt ettt et e st e et e bt e tee s et e sabe e bt e bt e st e e bt e bt e shbeeabeenbeeshaeeabeeateebaenateensen 88
8.1 INUMETIC TYPES .uvientieiiieiieiieete ettt ettt et s e sttt e st e sateebeebeesbtesabeenseesbeesabesnsaenses 89
8L L. INEEZET TYPES .eeueieiuiieiieiieiite ettt ettt sttt s e et e e e st e sabeenbaesaaesaseen 90

8.1.2. Arbitrary Precision NUMDETS .......ccuevviiiiiiriiniieiecitesieeeeieeteeee et 90

8.1.3. Floating-Point TYPES ...c.eevuririieriieniieiieeitesite sttt sttt ettt et n 91

814, SeTTal TYPLS ...eeuieruiieiieiteeite ettt ettt sttt et ettt et et e st st e be et e sate s 92

8.2, MOMNELATY TYPES -.eenviiruiieiieiieeiteeie ettt ettt ettt st ettt e st e bt e bt e sbtesabeebeesbeesabesaseenbes 93
8.3, CRATACTET TYPES -.eenvieiiieiiieite ettt ettt et ettt st ettt e s bt st e e beesbeesabesaseenbes 94
8.4. BINAry Data TYPES ....cooveruieiiriieieiietett sttt ettt et e 96
8.5. DAte/TIME TYPES....ccueeririieieiieietietete ettt ettt ettt et s ne s 97
8.5.1. Date/Time INPUL .......cooiiiiiiiiiii e 98
B0 1 L DIALES ettt st e 99

8.5 1.2, TIMES .ttt ettt ettt ettt et e st e e seeneenbeeneenes 100

8.5.1.3. TIME STAMPS ...ceutirniiiiiiiiiiieete ettt ettt et 100

8.5 1.4 INLEIVALS ettt 101

8.5.1.5. Special ValUES ......cccceruieiiiiieiieiieiiee et 102

8.5.2. Date/Time OULPUL ....c.eevueiiiriiiiieieeieeieet ettt ettt sttt ettt et sbe s e b eaee e 102
8.5.3. TIME ZIOMES ...ttt ettt ettt et b et b et et et e b bt et et eneenes 103

8.5.4. INLEINALS ..ottt 104

8.6. BOOIECAN TYPL....ueieiinieiiiieieeiteeet ettt ettt ettt et sttt 104
8.7, GEOMELIIC TYPES ...eeeuieiiriietiitieteettete ettt ettt ettt et et s b et sttt et sbe et s bt esae b eae e 105
871 POINES .ottt sttt ettt a e bbbt 106



8.7.2. LNE SEZIMENLS.....cueiiiiiiieiiieeieeiteiteste ettt e st e sttt e st e sitesabeebeesseesebeenseeseesans 106

8.7.3.  BOXES .ttt e 106
874 PathS ..o 107

8. 7.5, POLYZOMS. ..ottt ettt ettt st ettt st e 107
8.7.6. CIICIES ..o 107

8.8. NetWOrk AddIess TYPES....ccueeruierieriieitenteeteete ettt ettt sttt sttt e es 108
B8 1L ATttt ettt st eae e 108
882 A ATttt ettt ettt ene e 108
TR 00 T o T I e USSR 109
8.8.4. MACAAAT wetieriiiieiie et ectee et et ettt e et e e et e e st e e st eeesaeeesbeeesnbeeeenseeennsaeenraenn 109

8.9, Bit StrING TYPES ..ottt e 110
BL0. ATTAYS weentieiiteiteee ettt ettt e b e sttt b ettt e b e s et et e bt e s bt e sateeanean 111
8.10.1. Declaration Of Array TYPES.....ccceeeeieriieieriieiieierieete et 111
8.10.2. Array Value INPUL......cc.oooiiiiiieiiiieee et 111
8.10.3. ACCESSING ALTAYS ..ccuviuieuieitieiieieetiete st eete et et ettt et e st et e see et e sbesbeentesbeeaeenes 113
8.10.4. MOAIfYING ATTAYS...c.eieueeuierieeiieieetieienttette ettt ettt et see et e e b e ee st eaeenes 114
8.10.5. Searching in AITAYS......cccuererieriertieientietterte sttt ettt et be e 117
8.10.6. Array Input and OULPUL SYNLAX .....eeveriirieriiriieienieeieeeeeee et 118

8.11. COMPOSIEE TYPES ..ottt ettt s b et sttt ettt ae st beeaee e 119
8.11.1. Declaration of COmMPOSIte TYPES....cceevviruieriiririeniiniieieneeenie e 119
8.11.2. Composite Value INPUL........coceevieririiniiiiiirceieeteeeeee e 120
8.11.3. Accessing CompoSite TYPES ...c.eoeeveriirieriiriiiienieniieteeeetese et 121
8.11.4. Modifying CompoSIte TYPES...c.evueeveriirieriiniieienienitetenieetenie et 122
8.11.5. Composite Type Input and Output SYNLaX......ccceevveerverieeireenienieesieerieeneeennns 122

8.12. ODbject IAENTIET TYPES ..veeverrieriieeieeiierie et eieertteete ettt e steebeenbeesabesbeebeesenesasesnseas 123
813, PSCUAO-TYPES ..uveeeteeniieiieeiteeitesteeite ettt e st e et et e st e eabe e beesbessbeenbeesasesasesnseesssesasesaseas 125
9. FUNCHIONS aNd OPETALOLS ...uvieeieriiieiieniieniieeieesieesttesteesteesteesiteesbeebeessaesssesaseesseesssesnseensesssaessseens 127
0.1, LOZICAL OPETALOTS ....eeeuveeutieiieeiieeiieniieeite st enteesitesateebeesaeesstesbeeseesseesasesnseeseesssesnsesnsens 127
0.2, CoOMPATISON OPETALOTS ..c.vveeeierureriieriieriesieesteestesteeteesaeesstessseesseesseessessseesseesssessessses 127
9.3. Mathematical Functions and OpPerators...........cecuevverrueerieniennieenieeneesieeneeenieesnessesvens 129
9.4. String Functions and OPErators ..........ceueruieriierierieerieeneesteeieesieesieesreesseesbeesasesnsesveas 132
9.5. Binary String Functions and OPerators ...........cecuerverrieereeniennieenieentesieesieenieesvesneesvees 141
9.6. Bit String Functions and OPEerators ............cevveerieriirrieenienieeieenieesite e eieesieeseeeeeeeaees 143
0.7. Pattern MAtChING ......cccueiiiiiiiiiieiiieieee ettt ettt ettt et sttt et e st eateebees 144
0. 7.1 LIKE ettt ettt et s e sttt et st 144
9.7.2. SIMILAR TO Regular EXPressions.........ccccccueeieeiinieiienenienienieeeie e 145
9.7.3. POSIX Regular EXPreSSions .........c.cccceruieieiiniieiiineeienieneetesieeeeae e saeeenens 146
9.7.3.1. Regular Expression Details ...........cccooieviniiiiniiinieniiiececeeseeens 148

9.7.3.2. Bracket EXPIessions .........c.ccocciiiiiiiiniiiiiiiiiicieiececieeeee e 150

9.7.3.3. Regular Expression ESCapes..........coccvvevveieeriniinenieneeenineneneeeeeeeenne 151

9.7.3.4. Regular Expression Metasyntax..........coecveeeeerenrenieneeeereniensensenseeenene 153

9.7.3.5. Regular Expression Matching Rules .........c.ccceevenieneininicncnicniennncnn. 155

9.7.3.6. Limits and Compatibility ........ccceccrveruevuecieirininenieeeeeeneneeeeeeeeene 156

9.7.3.7. Basic Regular EXPressions ............coceveeveieiriniinienieneeenenenieseeeenenenne 157

9.8. Data Type Formatting FUNCHONS ........ccccueeieirinineniiieieenenieecreeeeeese e 157
9.9. Date/Time Functions and OPEIators.........c..ccceereruerieieieineniisieniereeereeresiesaessesseneeneene 163
9.9.1. EXTRACT, AT E@_PATE tettieeeeieeeitieeeiteeeeteeeeteeeeaeeeetaeeestreeessseeseseeeeseseeseeensreeas 166
0.0, 2. AT e £ T UILC e ee ettt e e e e e e e e e e e e e e et a e e e e e e aaaaaaaaaas 169

Vi



9.9.3. AT TIME ZONE.uutiiiiiiireeeeeeiireeeeeieirreeeeeiiirereeeessiseeseesssssseesssnsssseessesissssessmssseeses 170

9.9.4. Current Date/TIme .......cceecveviireeriinieieneeieieeeetesee ettt ettt et eanens 171

9.10. Geometric Functions and OPEratorS..........cceeveerierrieereenieriieesieesieeseeesseesieesnessesvees 172
9.11. Network Address Functions and OPerators...........coceeveerierrieenieeneeniessieenieeseeseesnnees 176
9.12. Sequence Manipulation FUNCHONS .......cccueiviiirieriiiiiieiienieeieeeesite e 178
9.13. Conditional EXPIeSSIONS........ccceruteiiriiriieniirieienitetenteeeete e enes e eeeaesneesne e eanens 180
LS G T R 028 PSRRI 180
9.13.2. CORLESCE .uttiuteiiiieeieieeeett ettt sttt ettt sae et e st e eneeaeennesaeennens 182

0. 13,3, NULL I E ciutteitteitte et ettt ettt et e st et et e s bt e sabe st esba e e st e sate e bt e sbtesateebeesneesaeeens 182
9.13.4. GREATEST QN0 LEAST c.uttiieeieeniteriteeieeieesitestesreesseesasesateesseesseesasesnseesseesseeans 183

9.14. Array Functions and OPETatOrS ............cceeuirieriiriiiieniieieie e e 183
9.15. Aggregate FUNCHOMS ........cciiiiiiiiiiiiiieieit et e s 184
9.16. Subquery EXPIeSSIONS ........ccccccuiiiiiiiiiiiiiiiiiicie ettt s 186
0,10, 1. EXISTS ettt sttt et ettt ettt ettt ettt eb e eb b a e e eneenes 186
0.10. 2. TN ettt bt ae ettt s h et b et e st eat e besaeenten 187
9.16.3. NOT  IN.uiiuiiitieiieteeitete ettt ettt st e bt et e e b et sbe et e besbe et e bt e st e naeeaeeaesbeeneens 187
9.16.4. ANY/SOME ..cuuieuieiiitieiesteeite ettt sttt et ettt ettt sbe et e st s bt et e sb et e et saeeaesbeeneens 188

0. 10.5. AL ettt ettt et b et b ettt st sbe et 189
9.16.6. ROW-WiSE COMPATISOM ... .eeviruieniiriieiienieeiteteeteete st etentesitete st eiee st saeeaesbeeneens 189

9.17. Row and Array COMPATISOIS ....ccueeuvertirieriiriteierieetenteettenteeieentesieessesiesseentesseenaesieennens 190
D171 IN e e et 190

9. 172  NOT  INuuiiiiiuiiiiieieteteitete sttt ettt sttt et et ae e enes 190
9.17.3. ANY/SOME (QITAY) «.veerverreeurenrerieeneenieetentesttentesteestesueeseensesseensenseeseensesmeensessessens 191
Q.17 4. BLL (AITAY) tuvverrreereerreeniresieesieesteesteesseesseesssessessseessaesssessseessessssesssesssessseessesns 191
9.17.5. ROW-WiS€ COMPATISON ....uvieiieiieriieeieeieeniieeieeteeseestesteesseessnesnseenseessnesssenns 191

9.18. Set Returning FUNCLIONS ......cccueiiiiiriiriesiieieeste sttt ettt esanesnaeeaaees 192
9.19. System Information FUNCHIONS .........cccuerviieriiinieniieieeterie et 193
9.20. System AdminiStration FUNCHONS .......c.cecvieriiirieriiiiieieenie ettt 198
1O, TYPE CONVETSION. ..ccuuieriiiiniieiieriieeieettesttesteeteesteesateeteebeessaesasessbeesstesssesateenseesssesasesseessaesnsenns 203
JO.1. OVEIVIBW ..ottt sttt ettt ettt et ettt st b e s bt et sae st ae st e b eenenes 203
1.2, OPETALOTS ..euvveeuiieiieeiieeteeniteeite st e bt estte sttt e bt e bt e siteeabeebeesbaesabeenseenbeesabesaseenbaesabesasesaseas 204
1O.3. FUNCLIONS ...oviiieniiiieiieiietete ettt ettt ettt et st bbbt ae et st e b eanenee 207
1.4, ValU@ SOTAZE .....eevuieeuieeiieiieeite ettt sttt ettt ettt e s bt st e bt e bt e st e sabeenbeesabesaseenbees 210
10.5. UNION, CASE, and Related CONStIUCES..........cccviieieeiiirieeieeiiiee e eeiveeeeeeereee e e 210
L1 TRAEXES .ttt ettt ettt sttt et st et et e s bt e e ab e st e e s bt e s st e sat e e beesatesate e beesaaesaneens 213
111, INEFOAUCTION ...ttt ettt sttt et sttt e e st e e e b e nae 213
T1.2. TNACX TYPES ettt ettt ettt st e sbe e st e b e bt e sat e eae e b e naee 214
11.3. Multicolumn INAEXES .......ceeueeruiiiriiiriiiniieieeiterte ettt sttt st 215
11.4. Combining Multiple INEXES ........ccoceeriirriirriiniieieeeeee et 216
T1.5. UNIQUE INAEXES ...ttt et sttt 217
11.6. Indexes On EXPreSSIONS .......ccueeuieiiiriieienieeiieie sttt ettt ettt st ee bttt enae s eneens 217
11.7. Partial TNAEXES ....cceoeueeiirieeieieet ettt ettt sttt et s eeens 218
11.8. OPErator CLASSES ....cveeueereeriieiietieieeteeetente et ete st et et et et e sbe et e sbesbeetesbeeneesbeeneenaesreeneans 221
11.9. Examining Index USAZE.........ccevivierieieiiininiiniiieieeeteeseseseeeeeeae e eneas 222
12. CoNCUITENCY CONIOL......iiuiiiiitieierieeiterteet ettt ettt et e st st e e bt et e b e e st enteeaeeeesbeenaens 224
12,1, TREFOAUCLION ...ttt b et ettt aesbeete b e 224
12.2. Transaction ISOIAtION .......c..ccouiiuieiiiniirieniiiieest ettt 224
12.2.1. Read Committed Isolation Level ..........cccooiviiiininiininiiinieeccee s 225

Vii



12.2.2. Serializable Is0lation LeVel...........cooooviiiiieiiiiieieeiiieee et 226

12.2.2.1. Serializable Isolation versus True Serializability ...........cccccevcveruennen. 227

12.3. EXPICIt LOCKING ..ottt ettt sttt st 228
12.3.1. Table-Level LOCKS.......cccccviiiiiiiiiiiiiiciciccceee e 228

12.3.2. ROW-Level LOCKS .......cccviiiiiiiiiiiiiiicicciccccees 229

12.3.3. DEAdIOCKS......coueeniiiieieiieietteitetesc ettt ettt s e 230

12.4. Data Consistency Checks at the Application Level............cccccoceovieiininiininicncnnenns 231

12.5. Locking and INAEXES.....c..coueiiriiiiiniiiieiiiieieeeeeteee ettt 232

13. Performance TIPS ........cceeieiieieienieeeesie ettt st s e st s 233
13.1. USING EXPLATIN .eeutiiiieieieiiteteeteeteteeeeete st eaesseeasesseeseeseesaeeseessesaeesnesneensesseeneenaesaeennens 233

13.2. Statistics Used by the Planner ..............ccoooiiiiiiiiiiiiceeec e 238

13.3. Controlling the Planner with Explicit JOIN Clauses...........ceccvverveererrerenienrenieneeeenens 239

13.4. Populating a Database ..........cocueevieriiniiiiieieie et 241
13.4.1. Disable AULOCOMIMUL .....ec.veitieeieierieeieteeiteie et ete st eetesee st e e teeseeseeeaeenaeseeennens 241

13.4.2. USE COPY.uutuirireienieieeitniesie sttt sttt be sttt et s ae i et et eat bt s be s e eneeneenes 241

13.4.3. REMOVE INAEXES .....couvetieiieiieiieiesteeeteee ettt 241

13.4.4. Remove Foreign Key CONSLraints .........coceevuevierienenienenieeneeieneeeieeneesieenens 242

13.4.5. InCrease maint eNancCe. WOTK_ MMM ..ceeeeee it eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaeeeaeeeeeaaes 242

13.4.6. Increase checkpoint_SEgMENTS iiiiiieccieeeeieeeeieeeeeteeeeeaeeeereeeereeeeaeeeeaeeaas 242

13.4.7. Run ANALYZE Afterwards.........cccocoviviiiiiiiiiiiiiiicceceias 242

13.4.8. Some Notes About PE_dUMP ...c..ovueriirieriiriinieieneeeeeseeeseete e 242

III. Server Administration 244
14. Installation INSIIUCHIONS ......c.ceoiiiriiiiiiiieiiietcee e st 246
14,1, SROTt VEISION ...ttt s 246

14.2. REQUITEIMENLS .....eeuvveeiieeitieiieniieeieesttesttesiteeteesteesstesseenseessaessseesseeseesssesnsesnseesssesssesnsees 246

14.3. Getting The SOUICE......ccc.eiriiriiiiieterte ettt ettt et st et estesaaeenbees 248

14.4. Tf YOU AT€ UPZIading .....ccoeeruiiiiiiiiiniieniieitenite sttt site et eieesbtesitesateebeesitesaseenseas 248

14.5. Installation Procedure............ccoiviviiiiiiiiiiiiiiiiciccece e 250

14.6. Post-InStallation SELUD......c.ceviiriieriienieriieieeieesite ettt ettt ettt sb e esateeeeeabees 255
14.6.1. Shared Libraries............cccviviviiiiiiiiiniiiiiiicincncicee e 255

14.6.2. Environment Variables ..........cccoceviiiininieiiinieiineeeeieneeeseeeene e 256

14.7. Supported PIatfOrms ........coccooviiiiiiiniiiieiiieeecceeteecte et 257

15. Client-Only Installation 0n WINAOWS.........cc.coieiiriiiiininieieniieiee et s 264
16. Operating System ENVITrONMENt ..........cc.cocieiiiriiiiiiniiiieienieieeeeete et s 266
16.1. The PostgreSQL USEr ACCOUNL .....c..cccveruiriiiiiiiieieiieieete ettt 266

16.2. Creating a Database CIUSLET ..........cccoociiiiiiiiiiiiiiiiiieecceeeeeee e 266

16.3. Starting the Database SETVET.........ccccueriiiiiiriiiiiiieeee et 267
16.3.1. Server Start-up Failures .........ccoccovieieiirieiieeese e 268

16.3.2. Client Connection Problems ............ccocerieiinieiienieierieeee e 269

16.4. Managing Kernel ReSOUICES..........co.erieriiiiiieiiieieeeeee e 270
16.4.1. Shared Memory and SEmaphores .........cccceceeuieriererienenieeseeeese e 270

16.4.2. ReSOUICE LIMILS .....eouiiiiiiieiieiieie ettt s 275

16.4.3. Linux Memory OVEIrCOMIMIL .......cc.eeuerierieientieienieeiteniesitee st eeteneeseeeneesaeeneens 276

16.5. Shutting DOWn the SEIVETr.........cooiiiiiiiiiieiiiee et 277

16.6. ENCIyPION OPLONS. ..c..eeitiriieiintieiienieeitete sttt sttt et et sttt sbtete st este st sbeenaesreenaens 278

16.7. Secure TCP/IP Connections wWith SSL .......c.cccooiviiiiiinininiiencceeiecse e 279

16.8. Secure TCP/IP Connections with SSH Tunnels ..........cccocoevevenenievininninininiccicieeenns 280

viii



17. Server CONTIGUIATION .....eeviiiieriiieieetiesite ettt ettt e bttt e sttesabe et e sbtesatesabeesbeesssesateenbeesanesaseens 282

17.1. Setting ParamEters ......cccueeruierieriieniienie sttt sttt ettt sbeebe e bt e sabesabe e beesatesaseensees 282
17.2. File LOCALIONS ....uouiiiiiiiiiiiiiiiiciiceteee st s 283
17.3. Connections and Authentication.............cceciviiiniiniiiiiiiiniiiicie e 284
17.3.1. CONNECION SELNZS ..ecuveeuieriiieiieniierteeteeniteete sttt e site st e bt e sitesateebeesaeesaneeas 284
17.3.2. Security and AuthentiCation...........cccuevuerierrenierieneeeenieneereseeeere e saeeanens 285

17.4. Resource CONSUMPLION.........cc.eeuieiiriirierieiterenieerereeieete e esressesueenesteennesseeneesnesaeennens 287
1741 MBIMOTY ..ottt sttt et st n e s ne s eanens 287
17.4.2. Free SPace Map.......cccoeeiiiiiieiiiniieeieeeeteeteee et s 288
17.4.3. Kernel Resource USAge.........ccoccuirieieriiiiiiiiniicienieeeceeeeres e 288
17.4.4. Cost-Based Vacuum Delay .........c.ccccooiiiiiiiiiiiniiiiiceiece e 289
17.4.5. Background WIIer.........c..ccuiiiiiiiiiiiiiiiicicieeere e e 290

17.5. Write ARad LOZ ..c.vevenieiiiiiiiiiteieceette ettt s st 291
17.5.1. SEUANES . c.evevititeieteieetetert sttt ettt ettt ettt be b eneeaes 291
17.5.2. ChECKPOINLS......cvevenieiieiieiiriestetetetet ettt sttt 293
17.5.30 ATCRIVING vttt sttt 293

17.6. QUETY PLANNING .....otiiiiiiieiieiieicee ettt st et st 294
17.6.1. Planner Method Configuration...........c..coceevueeeeienenienenieeneetene e 294
17.6.2. Planner Cost CONSLANLS ..........ccueeveeeiriinienieniereieiteeseseeteeeee et esesresseeeeeneenes 295
17.6.3. Genetic QUErY OPLiMIZET ......c.covueruerierierieieniieienie ettt ettt saee e sbeeneens 295
17.6.4. Other Planner OPtions..........ccccevererierierienienieienieeteniesieetesieeite e sieeneesieeneens 296

17.7. Error Reporting and LOZ@ING ........coeeveeririiiiniiiiiiinieienieeteniesiteesieete et 298
17.7.1. WHEre TO LOZ .ccuveuiiiiiiiieiieeeteseeeeet ettt st 298
17.7.2. WREN TO LLOE ittt e 299
17.7.3. WRAE TO LLOZ .eeiieeiieeiieiteeeeetete ettt sttt sttt st bee e 301

17.8. RUN-TIME SALISLICS ..ouvevieiieiiiiiiiiiiiieieieieet et s 303
17.8.1. StatistiCS MONILOTING ....cccvverereriieniieniieeieeieesitesteebeesieesiteseteenseesseeseaeebeenaeesens 303
17.8.2. Query and Index StatistiCS COIECLOT .......ccueruerriiiniierieriieiienie et eieeniee e 303

17.9. AUtOMAtIC VACUUIMING ....eouieiiiiiiiiiieniiesteeieeiee sttt esteesttesbeebeesbeesabeeabeenbeesasesaseenseas 304
17.10. Client Connection Defaults ............ccccociiiiiiininiiiiiicc 305
17.10.1. Statement BEhavior...........cccccoiiiiiiiiiiiiiiiiiccee 305
17.10.2. Locale and FOrmatting ............coevereerriienienienieeitesee ettt st 306
17.10.3. Other Defaults.........ccccooiviiiiiiiiiiiiiiiciiicceee 307
17.11. LOCK ManagemeNL ......c..coeeiiriieiiiieieieieeienie ettt sae et sne et esnesaeennens 308
17.12. Version and Platform Compatibility ..........ccccocceceriiniieriininnininiciencceeceeee e 308
17.12.1. Previous PostgreSQL VErSIions ........c..cccceeeeieiienirieneneeieneeeee e 309
17.12.2. Platform and Client Compatibility..........cc.ccceeviniriiininiiiiinieiieeeeneenns 309
17.13. Preset OPLONS. .....oouieiiiieiieieeieeteie ettt ettt e st sa e st eae e nens 310
17.14. CustomiZed OPLIONS ...c..eerueiruiiriiiiriieniiieteerterite ettt ettt st e b e st e s aeereesae 311
17.15. DEVElOPET OPLOMS ... .eeveiieiietieieieeiente et ete st ete ettt etesteeeesbesseeeesseeneesseeseensesneeneans 312
17.16. SNOTT OPLIONS ...cutitieiieiteeeteteet ettt te ettt et et e et e et e b e sae et e sbesseentesbeentesaeeneensesreeneans 313
18. Database Roles and PrivIIEEES ........cccceriruieiiiriieiinieeieiesiteeie ettt s 315
18.1. Database ROIES ......cc.coouiiuiiiiiiiieiee ettt sttt et 315
18.2. ROIE ALIIDULES.......eeeieiieieeiieieeteete ittt ettt ettt ettt ettt sbt et e bt e st eaeenaesbeeneens 316
I8.3. PLIVILEZES ..ottt sttt ettt st s b et eb et e bt et e b bt et e b eseenee 317
18.4. ROIE MEMDEISHIP ...cuiiniiiieiiiiieieiteeiteet ettt st 318
18.5. Functions and TTIZEETS .......ccueveeriererienieitieienieeiterte sttt sttt et 319
19. Managing Databases ..........cc.eeeeriererienieniieienieetente ettt ettt sttt st ettt et et bt enaesbeenens 320



JO.1. OVEIVIEW ..vvvviieieeiiieeeeeetieee e eeetee e eeae e e eee e e e eettreeeeeetaseeeeeesaaseeeeeeasseeeeensneeeeeeernnens 320

19.2. Creating @ Database ........cooieriiriiiriienieeie ettt ettt ettt e st saeenbees 320
19.3. Template Databases ........ccoiereeriiiniienieiieeieeiee sttt ettt ettt e e st saneeabees 321
19.4. Database CONfIGUIALION ...c.eeruiiriiiriieniienieeieenite sttt et ettt sbeesatesabe e beesatesaseeabeas 323
19.5. Destroying @ Database .........ccueeueerierieniieieeieesiieeieeit ettt sttt et es 323
19.6. TabIESPACES .....cveeuririeireieeiieieeitetet ettt ettt et sae et ae st e sb e st st eaesaeennens 323
20. Client AUNENTICALION «...eevieriieriiieieesitertte ettt ettt e bttt e st e et e et e s bt e st e sabe e bt e sabesateebeessaesaneens 326
20.1. The pg_hba . Conf fIl€ ..cuiiiiieeeiiieiie ettt sree e naeeeseseeas 326
20.2. Authentication MEthOAS .......cccueriuiiriiriiriieieetere ettt st 331
20.2.1. Trust aUtheNtICAION. ......ccovueeieiriieiieeieeieeeiteete ettt ettt e s e 331
20.2.2. Password authentiCation..........cc.cerueerieriieenieniienieeniteeteete et st saee e 331
20.2.3. Kerberos authentiCation .............ceeeruerueeierieeierieneeiesiesiceie st eee e eee e seeeneens 332
20.2.4. Ident-based authentiCation ............cceouerueeieriiniieiese ettt et 333
20.2.4.1. Ident Authentication over TCP/IP.........ccccocoiiiiiiiniiiieceeeee 333

20.2.4.2. Ident Authentication over Local SOCKets .........c.cceccevirieniniceneneneene 333

20.2.4.3. 1At MAPS ..c..eeriiiiieniieniieieeitenite ettt ettt sttt 334

20.2.5. PAM authentiCatiON. ......ce.veruieuierieriieienieeiteteetcete sttt sttt e aee e saee e seeeneens 334

20.3. Authentication ProbIEINS .......ccceiuieiiriiriiniiiieiertete ettt ettt s 335
21, LOCAIZATION ..ottt ettt ettt et b et bt et e bt s bt et s bt et e bt ebt et sbeeaesbeenaen 336
21.1. LOCALE SUPPOIT...cueiiiiiiiiiiiiiiiteieitteteet ettt ettt ettt ettt et sbe et e b st e bt saeenaesbeennens 336
2111 OVEIVIBW ..ottt sttt ettt ettt st b ettt st e e b ennens 336
21.1.2. BERAVIOT ..ottt ettt st s 337
21.1.3. PTODICINS ..ottt sttt ettt st st 338

21.2. Character SEt SUPPOTT......cccveeruerriierirerieeiteereestesteeteeseestessseesseesseessesssessseesssesssesssees 338
21.2.1. Supported CharacCter SELS.......ccuerierrieriiierierieeieeieesteseeereesieeseesaeeseenseesens 338
21.2.2. Setting the Character Set........cccverieriierriienienieeieeieesteste st eiee e ae b eseee e 340
21.2.3. Automatic Character Set Conversion Between Server and Client.................. 341
21.2.4. Further RadiNg ........cccveiiieiiiiiiieiieeieeeerteeteet ettt st 344

22. Routine Database Maintenance TasKs...........coceverirrienenienienieniininteeneeresieeeeste e sieennens 345
22.1. ROULNE VACUUIMING ...eeeuvieiieeiieiiientienite et et e sitesite et esieesitesbe e bt esbeesaseebeebeesasesnsesnseas 345
22.1.1. Recovering disSK SPACE........ccceirieriiriiieiieniieeieeiteste sttt st 345
22.1.2. Updating planner SLAISTICS .e...eerueerrerrueerieenirenieeieenitestesieesieesieesaeeenseesaeesnneens 346
22.1.3. Preventing transaction ID wraparound failures ............cccccceeievininncncnnennn. 347
22.1.4. The auto-vacuum daBMON ........c.eerueerueerieerirenieeieesteesteeieesieesieesteenbeesseesaneens 349

22.2. Routine ReINAEXING ......c.eeruirieiiniiiiiiieieieeeetenie ettt et s 350
22.3. Log File MaintenanCe. ..........cccceeueeiiruieieniineeiesieereste e eeeeae e enes e eeesaesneennesaeennens 351
23. Backup and RESTOTE .......cccuoouiiuiiiiiiiieiieceeeeet ettt s s 353
23.1. SQL DUIMP...iiiietieeete ettt ettt ettt ettt e e e et eaeebeentebeeneenteeneeneesneennens 353
23.1.1. Restoring the dump ........ccccciiiiiiiiiiiiiicicee e e 353
23.1.2. Using pg_dumpall......cc.cccovueeiiiiiiiiieieiieniteeeeeeiteeteee ettt 354
23.1.3. Handling large databases ...........cccceeruereeieriiniieieneeiese et 354

23.2. File system 1evel DACKUP. .......ccoiitieiiiieiee ettt 355
23.3. On-line backup and point-in-time recovery (PITR) ........cccocoiiiiiiiiiiniiniiecces 356
23.3.1. Setting up WAL archiving..........ccoccevueririeiiinieieneeiesescee et 357
23.3.2. Making a Base BaCKup ........ceceeriiiiiiiiiieiiceeseeeetee e 359
23.3.3. Recovering with an On-line Backup........cccccoceviniiiininiiiiniicec e 361
23.3.3.1. RECOVEIY SENES ....eveeuieiiriieieniieientcete ettt ettt 362

23.3.4. TIMELINES ...cuveeiieeeiiieieeteetete ettt ettt st ettt b ettt saeeaesbeennens 363



23,35, CAVEALS ..vveeeeeeeieeee ettt eeete e eetee e e e et e e e e e et e e e e e etar e e e e eeatareeeeetaateeeeetrraaeann 364

23.4. Migration Between RelEases ........ccueviiriiiriirieniiiiceteste ettt 365

24. Monitoring Database ACHIVILY ......c.eevueriirriierieeniieiieeritesieesteeteeieesitesitesteesbeesatesateenbeesseesaneens 367
24.1. Standard Unix TOOIS ........cceoiiiiiiiiiiiiiiiiiiiiccc e 367

24.2. The Statistics COIECTOT. .....coiiiiiiiiiiiiiiiiecce e 367
24.2.1. Statistics Collection CONfIGUIALION .......cceecviruieiirieienienieieniieeeie e seeanens 368

24.2.2. Viewing Collected StatiStiCs .........ccecverririeriinieiiinieieneneetenieeeesae e saeeanens 368

24.3. VIEWINZ LOCKS ...c.eiiiiiiiiii et st e 373

25. Monitoring DISK USAZE ......cc.oouiiiiriiiiiiiiieiieieiest ettt st 375
25.1. Determining DisK USAZE ........cccouiriiiiiiiiiiiiiieieiicieeeece e 375

25.2. DiSK FUll FAIlUTE .....coueiiiiiiiiiiiiiteeet ettt 376

26. Reliability and the Write-Ahead LOg.........cccveieriiriiieiicieeeeee et 377
26.1. REIHADIIILY ..evcuveuieiieiiieieicieieeee sttt sttt e 377

26.2. Write-Ahead Logg@ing (WAL) ......coouiiiiiiieieeeeee ettt 378

26.3. WAL CONfIZULALION ....vtuieniiiiieieitieiieste ettt ettt ettt aee st et sbeestesbe et e ntesaeenaesaeeneans 378

26.4. WAL INEEINALS ...cueeeiiiiieiieie ittt ettt ettt e sb et e b et e e saeenaesbeennens 380

27, REGIESSION TESES ...c.uiuietieiietietiete sttt ettt sttt et s b ettt e et sat e besbe e e bt esteaesseenaesbeeneans 381
27.1. RUNNING the TESES ....veviriieiiiiieieriieieeieeteee sttt et ettt be st e e b enaens 381

27.2. Test EValUALION .....c.ooviiiiiiiiieiiiiitiicceeetet sttt s e 382
27.2.1. Error message differences. ... ..cooeveevierieriiniinieiiineeieestee e 383

27.2.2. Locale differenCes .......ccoceviriiieiiiiiriinieeieeeeee et 383

27.2.3. Date and time differences .........cccccevivivinienieieininiiccccc e 383

27.2.4. Floating-point differences ........c.ccoceevuererieriiniiniinieienenteesieeenie e 383

27.2.5. Row ordering differences........coceveecveniinieniniinienenicieneeeeeeee e 384

27.2.6. Insufficient Stack depth .........cocuieiiiriiiiiiiiieeee e 384

27.2.7. The “random” teSt .........ccoeiririiriiiiiiiiiiiiieetee ettt 384

27.3. Variant Comparison Files ...........c.cccoiiiiiiiiiiiiiniiniiiiiiicccce e 384

IV. Client Interfaces 386
28. TIDPG = C LIDTATY .eeeeieiiiieiieeiieeie ettt ettt sttt et ettt et e s bt e st e st e bt e satesateebeesaaesaneens 388
28.1. Database Connection Control FUNCtions ...........cccccccveiiininiiiiiniiiiiiiicnciciee 388

28.2. Connection Status FUNCHONS .........ccccuiiiiiiiiiiiiiiiiie e 394

28.3. Command Execution FUNCHONS .......cc.coceririiniiniiiiiieiciieccieneceeeeeee e 397
28.3.1. Main FUNCHONS .....oovviiiiiiiiiiiiiieniteeeeeete ettt ettt 397

28.3.2. Retrieving Query Result Information .............ccccooceeiininniininiiniicceene 403

28.3.3. Retrieving Result Information for Other Commands .............ccccceeveeninenne. 406

28.3.4. Escaping Strings for Inclusion in SQL Commands ...........cccceceviivenineenen. 407

28.3.5. Escaping Binary Strings for Inclusion in SQL Commands ...........cccccceceenueenne 408

28.4. Asynchronous Command ProCessing..........cc.ceveverueieirverininenieneeeeeneneneseeeeeeneene 409

28.5. Cancelling QUEries in PrOgress .........ccoeoiririeriiiieiesieeenie et 412

28.6. The Fast-Path INtrface. .........ccoeiuieiiiiiiiieiee et 413

28.7. Asynchronous NOtHICAION .....ccueiueeiiriieiiiieieie ettt sttt e 414

28.8. Functions Associated with the COPY Command ............cccceeeerineriienenieninene e 415
28.8.1. Functions for Sending COPY Data.........ccceeruiriiiinirienenieieniteesie e 416

28.8.2. Functions for Receiving COPY Data......ccceoueruieviinerienenieieniieiesieecee e 417

28.8.3. Obsolete Functions fOr COPY .......cceciiiriirienienieininisieniceereeeeeve e 418

28.9. Control FUNCLIONS ......ccueiueieiiiiiiiiiticieieteetettee sttt sttt s e 420
28.10. NOLICE PrOCESSING ......eoueeniiriiiieniieiienieeiteie sttt ettt sttt sttt s e e sbeennens 420

Xi



28.11. Environment VAriabIEs ...........ccovviiieiiiriiiiiiiiiieeeeeeitieeeeeeereeeeeeeetreeeeeeeetareeeeeevereeeeennns 421

28.12. The Password FIIE .........coccocieriiiiiiiniiniiiiieeieneeteteeete ettt 423
28,13, SSL SUPPOTL.cutieiiieiieeiieeiteete ettt ettt sate sttt e st e st e s be e bt e bt e saseebeebeesasesnsesaseas 424
28.14. Behavior in Threaded Programs ...........ccoveevieriiiiieinienieeieeicesiee et 424
28.15. Building 1ibpq Programs..........c.cooieriiriiiiniienienieeieeeeste ettt 424
28.16. EXample Programs.........c.ccocevieiieiiiniiniienieiieicnieetesteeeeee ettt st 426
29, Large ODJECLS ...couveiieiieiieiietieteete sttt ettt ettt ettt e bt st ae st n e n e ae st ene e eanens 436
29,1 HISTOTY .ttt ettt sttt ettt sttt et et sbe st ettt eae b b e s b sae et eaeeneeae 436
29.2. Implementation FEAtures ...........cc.coceiiriiiiiiiieiiiieeiece et 436
29.3. Client INtEITACES. ... .eevteiiieriieeieeieett ettt ettt et sttt et e bees 436
29.3.1. Creating a Large ODJECt ........cccccuiiiiiiiiiiiiiiiiiciie e 436
29.3.2. Importing a Large ODJECt.........cccoiiiiiiiiiiiiiiiiiie e 437
29.3.3. Exporting a Large ObjJEcCt.......c..ccuecvririninenienieinenenenteeeteeeieeresreseeee e 437
29.3.4. Opening an Existing Large Object..........ccccoevieiriniininienieieininesenceeeeene 438
29.3.5. Writing Data to a Large ObjJect..........ccceevuerveieireniinenieieieeeeeeseseceeeenenes 438
29.3.6. Reading Data from a Large ObJect .........ccceeveveeerininenieniecieininiesesceeeenene 438
29.3.7. Seeking in a Large ODbJECt.......ccceriiiiriirieiiniieiese ettt 439
29.3.8. Obtaining the Seek Position of a Large Object.........cccceveevenieiieninieenenenene 439
29.3.9. Closing a Large Object DEeSCIIPLOL ....c..coveiiriieriirerienieniieieniteeenie e sieeneens 439
29.3.10. Removing a Large ODJECt ......c..coceevieriirieniiniieiinieeieesteesi e 439

29.4. Server-Side FUNCHOMNS. .....c..ccoeciiiriiniiieieieiieseeeeee ettt s 439
29.5. EXample Program ...........coccovieriiiiiininiinineeenieeesteetenee sttt 440
30. ECPG - Embedded SQL N C.....ouooiiiiiiiiiiiiieicicieiniesececetetetee et 446
30.1. ThE CONCEPL...cevieiiieieeiterieeteeittesteeteste et e sttesetessbeesseessbessbeeseesseesnsesseensaesssesssesnses 446
30.2. Connecting to the Database SEIVET.........cceoverieriiriiienienieeieerieesite et e e eaeeaees 446
30.3. ClOSING @ CONNECTION ..uvveerieiieeiiieniienieeieerteestesteeteesteesstesbeesseesseesseesseeseesssesssessses 447
30.4. Running SQL COmMMANAS........cccueeriierieriiieniieniesieeieenieesteeteesieesseesseesseesseesssesssesnses 448
30.5. ChoOSING @ CONNECHON. ...c..eerieriieriierieeieesieeste st eteesieesttesbeesbeesteesaseeseebeesasesssesnseas 449
30.6. USING HOSt VATTabIEs ......eovuiieiiiiieiieeieeieeiteste sttt sttt st ettt s ebees 449
30.6.1. OVEIVIEW ..uiiiiiiiiiiccctece et 450
30.6.2. Declare SECHONS. .....c..cviiiiiiiiiiiiiiiiii e 450
30.6.3. SELECT INTO and FETCH INTO .eccvoiriiririiiiiiiiiiiiiniinesieieneencsiesaessessesenceneas 451
30.6.4. INICALOLS. ....ccuiiiiiiiiiiiiiiiicc e 452

30.7. Dynamic SQL....c.cooiiiiiiiiiiiieienieieeeee ettt e 452
30.8. Using SQL DeSCIIPLOr ATAS.....c..cecueruieuieriirieieriietentieeeteeeernesieenesieeeesseeneesnesaeennens 453
30.9. Error HANAIING .......cooouiiiiiiiiiiieiecec et s s 455
30.9.1. Setting Callbacks ..........cceririeiiiiiiiiieiee e 455
30.9.2. SQLCA .. e 457
30.9.3. SQLSTATE VS SQLCODE...ccuiiuiiiiiiiiiiiiiiiie it s eneas 458
30.10. INCIUAING FILES ...ttt ettt sttt et e nee e ennens 460
30.11. Processing Embedded SQL Programs............ccceecirieieninieneniceiesieeiesie e 461
30.12. Library FUNCHOMNS ......eoteriiriieieitieieeieeteete ettt ettt et sttt et s e neesaeennens 462
30,13, INLEINALS ...ttt ettt et e e b bt et e be e st et ene e e sbeennens 462
31. The Information SCREMA. ........ceiuiitiiiiiieiee ettt st 465
31.1. The SCREIMIA ..ttt sttt et st 465
31.2. DAtA TYPLS -ttt ettt ettt st ettt ettt e a et bt et s bt et b e e bt et bt et sbeenaen 465
31.3. information_schema_catalog_Name . ieccieeeeieeeeireeetreeeetreeeeseeeereeeeseeeeaneaas 466
34, PP LA CAD e T Ol @S aiiiiiiiiiiieeeieeeete e et e e eetee e et eeeteeeeateeeetteeeetaeeeataeeeteeeeteeeeabeeeaaraean 466

Xii



3.5, CRE K COMS T TAIIIE S teeeeieeeeeeetit e e e e e e e e e e et et eeaaeeseeeeeeeeeeeeaaaaanaeaaaeeaseaeaeees 466

31.6. COLUMN_AOMAIN_TUSATE tturrireeiiirreeeeeiirereeeeiireeeeeeiirareeeeseiseseeeeesssseeesessseeessssssseesennsns 467
31.7. COLUMN_PILIiVILEGES tittiireeeeeiiitreeeeeeiiteeeeeeeiteeeeeeeitaeeeeeeeteeeeeeeetseeeeeeestaseeeeeetereeeeenans 467
3.8, COLUMN . Ut U SBGC M tiiiiiiitrieeeeeirreeeeeiireeeeeesireeeeeeettareeeeeeteseeeeasssreeeeeestsseseeeessseeeeenses 468
31,0, COLUMMS ttieiiiieiiieeeiteeeiee et e ettt e e tbeeesteeeestaeessbeeeasseeessaeasssaaasssaeansseessssaesssaeenssseenssenns 469
31.10. constraint_COLUMN_USATE rrerreeriirreeeeeiirrreeeeeiirrreeeeeirreeeeeessreeeeeessseseesssssseeseennns 473
31.11. COnStraint _taAb e USAGE uiiiiiiiiiiieeeeeiteeeeeeeittreeeeeetreeeeeeetrreeeeeeesareeeeeessseeeeenns 474
31,12, data_tyPE _PTrivVileges ciiiiiieeiieeeiieesiteeesteeesreesssseeessseesssseesoseeessesesssseessseens 474
31,13, AoMain. CONSETAINTS tiiiiiiiiiiiiciceeeeee e ee e e e e e e e e e e e e eeeeeeesessesssararereeeeeeens 475
31.14. AOMaIN UL S AT i iiiuiieeeeeiitieeeeeeiteeeeeeeitteeeeeeetaeeeeeeebeseeeeassaeeeeeessseeeeaesseseeeeanes 476
3115, AOMAAINIS tiieeiiiiee ettt ettt e e ettt e e e et e e e e e ettt e e e e e baa e e e eeeabaaeeeeetbaeeeeearaaaaeeaerbaraaeaannes 476
31,16, CLEMENt_LYPES teretieeriieeiieeerieeeiteeetteeetaeesseeessteeessseeaasseeessseeasseesseeeansaeeanseeennseens 479
3.7, A L A T Ol eSS tuuiieeeee ettt e e e e e e e ettt e e e e e e e et t ettt ——————————————aa 482
3118, Ky _ COLUMN S AT i iiiuiieieeiitieeeeeeirteeeeesitteeeeeeettaeeeeeesreseesaassaseeeeasaseeeeaassaseeesanes 482
Rl B B o ot T =S o= TSR 483
31.20. referential CONSTraint S ettt e e e e e et eeeeeeteaeeeeeaaeeeenaaaaaes 485
31.2]1. rOle_COLUMN_GIANES tiritrieeeiirreeeeeiirrreeeeiirrereesaeraeeeeesasraseesassssssseesassssesessssssseessnnnns 486
31.22. role _rOULIiNE_GTANTS tiiiiiiiiiieeeeiiiieeeeeeitteeeeesetaeeeeeseateeeeseesraeeeesesaseeeesnssaneeesanens 487
31,23, 0l _table _GTants iiiiieeiieeeeieeeitieeeeteeeeiteeeeteeeeseeeetseeestseeeesseeeeseeeesesensseessreaas 488
31.24. £OlE _USAGE_GTANES wutieiirieeeieeeetreeeitreeeiteeeeiteeeateeeeseseessseessseeessseesesseessesensseessreeas 488
31,25, rOULINE . PIrivVIiLEGES tiiiiiieiiiiiitiee et eeetee et e e eteeeereeeeteeeetaeeeetaeesaeeeeareeeeaseeenereeas 489
320, L OUE IIIES cetreeiutieeeteeeeiteeeettee et e e eetteeeteeeeteeesaaeeeatreseeasesesseeensseeensseesaseeesnsesensseeensreaan 490
327, SO EIMAE A ceutieiiuiieeeiee ettt e ettt e ettt e et e e ettt e e e teeeeaeeeetbee e abee e tbeeetaeeetaeeetaeeantaeenabreenaraaan 494
3128, SOl FEALUTES tivretreeeieeitreeeeeeeitteeeeeeeteeeeeeetreeeeeeetareeeeeesteseeeeenateeeessestareeeeenbaseeesenaes 495
31.29. sql_implementation_INFO wieeeiiiieeeeieieeeeeeeriereeeeesareeeeeeareeeeeetareeeeeaes 496
31.30. SOL_LANGUAGES terurrreeeeiirreeeeeeeitreeeeeiiiteeeeeesireeseeeettareeeeeeseseesenssesseesssraseseesssseseessenses 496
31,31, SOl _PACKAGES teeetreieeeeeitteeeeeeeitteeeeeeeteeeeeeesaeeeeeeettaeeeeeeebereeeeenataeeeeeetareeeeenbareeeeaans 497
3.3 SOl S i Z AN Guutiiiieiirieee ettt eeee e e e e e e e e et a e e e e ettateeeeetareeeeeabareeeeaans 497
31.33. SOl _SiZiNg PrOFileS ciiiiiiiitriieeeeiieee e e eeeteee e eeae e e e et e e et eee b e e e eetareeeeeans 498
3.3, LAl COMSTETAIINIES teetieeeeeetitee e e e e et eeeeeeeeeeeeeeeeeeeeeaaaaeaaeseaeeaeanees 498
31,35, LA L DT A VI L @GS iiiiiitiieeeeiitreeeeeeciteeeeeeeiteeeeeeettareeeeeeteeeeeeeeareeeeeentareeeeeebareeeeeans 499
B R LT =Y o 3 oY= TSRO PSP 500
RO G WA e Ko o 1 of- B U U USSR SUUTURR SR PURURURUOTRRSRRRNt 501
31,38, USAGE P T A VI L OGS iiiiiitiiieeeeiitteeeeeeciteeeeeeettteeeeeettaeeeeeeeteeeeeeesttreeeeeetareeeeeebareeeeenns 502
31.39. VieW_COLUMN_USEGE tiiirrireeeeiirreeeeerireeeeeeiireeeeeaaisrseseeeiissseeseassssseessssssesessssssseessanses 503
31.40. VieW LAl e USAGC i iiiiiiieeeiitieeeeeeiteeeeeeeitteeeeeettaeeeeeeebeeeeeeeattaeeeeeetareeeeeebaeeeeaanes 503
3L ], VA@WS treeeeeeiiiie e ettt ettt e et e e e e e et b e e e eebaaeeeeeetaaeeeeaaataaaeeeataaaaeeeararaeeaanes 504
V. Server Programming 505
32, EXtending SQL.......ooiiieieie ettt ettt et h ettt et s he et b eneenes 507
32.1. How ExXtensibility WOTKS........ccoiuiiiiiiiiiiiiee et s 507
32.2. The PostgreSQL TYPe SYSIEM.....cccueriiriiiiiiiieriiiieeeente ettt 507
32.2.1. BASE TYPES vttt sttt ettt sttt st e 507
32.2.2. COMPOSILE TYPES ...eeuvieieuieniiriieientieitenteeetente sttt ettt sttt see et e sbe bt et et eaee e 508
32.2.3. DOMAINS ....evvieeeiieeeiieeeeitee ettt eett e et e et e e eete e e eteeeeteeeeaeeeeeseeesaseeeeaseseeaseeennreeas 508
32.2.4. PSEUAO-TYPES ..ottt ettt sttt et s 508
32.2.5. POLymMOIPhiC TYPES ..eeveeuieiiriieieniieiieiteitete sttt ettt 508

32.3. User-Defined FUNCHONS .......occuiiiieriieeieeiteiteete ettt eve et esieesveeseesteessneensesnsees 509

Xiii



32.4. Query Language (SQL) FUNCLIONS .......oocuiiriiirieniiiiieierie ettt 509

32.4.1. SQL Functions on Base TYPES .......cecuervueeriierieriiiiienienieeieenieenieesee e eniee e 510
32.4.2. SQL Functions on Composite TYPES .....ccceerieriirriienienieiieeieenee e 511
32.4.3. Functions with Output Parameters.............coecvevueriiienieniieniieeienee e 515
32.4.4. SQL Functions as Table SOUICES .........c.cceevreeiiieeeiiieeeiir e esrieeereeevee e 516
32.4.5. SQL Functions Returning Sets .........c..cecceeuirierieninienieneeieneeeeneneeresreeaeenns 516
32.4.6. Polymorphic SQL FUNCtions .........ccccccoecieiinieieninieieneceeeceeeeeeeeseeeenne 517

32.5. Function OVerloading...........ccccevieiiriiniiiniiiieieneeieieeeete et 519
32.6. Function Volatility CateZOTIIES .......cc.ceuieueruirienieriieientieiete et eeere e s enens 519
32.7. Procedural Language FunCtions ...........ccccceoieiiiiiiiniiiiiiicciescceeeeeeee e 521
32.8. Internal FUNCHONS ...cc.ueiitiiiiiieieeieeiteete ettt ettt st ettt enees 521
32.9. C-Language FUNCLONS. ....c..ccuetririiriirieieieiieiintentetctetet ettt ettt 521
32.9.1. Dynamic Loading.......ccceceeireriinieieiiineniiteieteeeteesieseeeeteie et 522
32.9.2. Base Types in C-Language Functions............ccceceeverenenenienicencnenienienneeenens 523
32.9.3. Calling Conventions Version 0 for C-Language Functions .............cccccveueenen. 525
32.9.4. Calling Conventions Version 1 for C-Language Functions .............ccccceeeueee. 528
32.9.5. WIItING COAE......eouiiiiiieierieeiieest ettt ettt 530
32.9.6. Compiling and Linking Dynamically-Loaded Functions ............ccccccevuenneee. 531
32.9.7. Extension Building Infrastructure...........c.ccocceverenienininniniiiencnceienceeene 534
32.9.8. Composite-Type Arguments in C-Language Functions.........c..cccceveevienennnene. 535
32.9.9. Returning Rows (Composite Types) from C-Language Functions................. 536
32.9.10. Returning Sets from C-Language Functions...........cccceccevereriencnennicncnnenn. 538
32.9.11. Polymorphic Arguments and Return TYpes.......cccevveveeveneneencneenicnennenn 543
32.10. User-Defined AZEIEZALEs ........coeeuiriiriiniirienieniieienieetenteeieentesieetesiesieeneesseeseesieennens 545
32.11. USEr-DEefiNed TYPES ..eeuveerureeiiiiieniieeieeiteniteste st eteenieesitesbeesseesaeeseseeseeseesssesssesnsens 547
32.12. User-Defined OPEratorS.......c.cecueerierieriieeriieniesieeieesieestessseesseesseessessseesseesssessesssees 550
32.13. Operator Optimization Information...........ceeeveriirrieriienieeieeeeree e 551
32.13.1. COMMUTATOR c.veviiieiiiiitinietettetesc et esc sttt a e 551
32132  NEGATOR wveviieniiineiitesietest ettt 552
32133  RESTRICT ooviveeiiieiiiieietesc ettt en et 552
321304, TJOIN .ottt 553
32.13.5. HASHES .ottt ettt 554
32.13.6. MERGES (SORT1, SORT2, LTCMP, GTCMP ) .uuvveeeeeeirrreeeeerrreeeeeeirrreeeeessreeeeeennns 555
32.14. Interfacing Extensions To INAEXES.........ccceovvevierieiieniieiiiniiiieienecreeeeete e 556
32.14.1. Index Methods and Operator CIaSSes ..........ccccevereereneeceeneeeeneneereneeeenns 556
32.14.2. Index Method SErategies ..........coceecueviieieriinieiieninicieeeceere e 557
32.14.3. Index Method Support ROUINES .........cccoiriiieniniiiinicccceececeeeee 558
32.14.4. An EXAMDPIE ..ot 559
32.14.5. Cross-Data-Type Operator CIasses ........c.ccoceevueruirierienieiieneieeneneeeeseeeenns 562
32.14.6. System Dependencies on Operator Classes .........ceveeveerieeneeneenienneeneennn 562
32.14.7. Special Features of Operator Classes..........ccevererierenienieneeieneeseeee e 563

B3 TIIZEETS ettt ettt ettt et e et e e teea e e be s et et e bt es e et e e st et e seeemt e besbeenteebeente bt eateaesseeneenbeeneenes 565
33.1. Overview of Trigger BEhavior..........cccoeiiiiiiiiiiieieieee e 565
33.2. Visibility of Data CRanges.........c.cecereeiieririeieitceiesieee ettt s 566
33.3. Writing Trigger FUnctions in C ........ccccooiiiiiiniiieeneeee et 567
33.4. A Complete EXAMPIE ......ocevieriiriiiiiiieieietees ettt s 569
34. The RUIE SYSTEIM ....ceutiiiiiieiiiiieieet ettt ettt ettt b e sb et bbbt st e st st et e b eaeenee 574
34.1. The QUETY TIEC..c..eeteiiiieiieiteieet ettt ettt b ettt e e e enaens 574

Xiv



34.2. Views and the Rule SYSEM .....cccuiiiiiiiiiiiiiieieeie ettt sttt e 576
34.2.1. How SELECT Rules WOTK .......cccocieiiininiiiiiiiieninicinecccceeceeeseeeenne 576
34.2.2. View Rules in NON-SELECT Statements ........coceververreneeueneeeereneenueneneenne 581
34.2.3. The Power of Views in PostgreSQL ..........ccocerviiiiiinieniiiiiieieteeeeeieee 582
34.2.4. UPAAtiNg @ VIBW...eoueiiiiiiiiiiieieeitte ettt sttt ettt sttt e s st e enaee e 583

34.3. Rules on INSERT, UPDATE, QNd DELETE ....cccovveeeeieirrreeeeeerreeeeeeerreeeeeeesnreeeeessneeeeennnns 583
34.3.1. How Update Rules WOrK ........c..cocoeciiiiniiiiniiiicceeceeceeeeee 583

34.3.1.1. A First Rule Step by Step......cccevieiiriiiiiiiiceieceeece e 584
34.3.2. Cooperation With VIEWS.........cceiiiiiiiiiiiiiiiiiieececeeeeeee e 588

34.4. Rules and PrivileZes ........coccoieiiiiiiiiiiiiiiiiieeccece et s 593

34.5. Rules and Command STALUS.........cooeerieriieriienienieeieereesite ettt et et saeeenees 594

34.6. Rules VErsus TTIZEETS ...c.couevruiririinieieieieiteiesie ettt ettt sttt sae et 595

35. Procedural LangUages ..........c.ccociiiiiiiiiiiiiiiciecc e s 598

35.1. Installing Procedural Languages .........c.cccceceeuererenieieireniniiiencreeeneeese e 598

36. PL/pgSQL - SQL Procedural Language ...........cccoeeieriirienieneeieseeiteieeieee et 600

30.1. OVEIVIEW ..oeeuvieiieiiiieieetiesteeteeteesteesstesteesseasssessseensaesseessseasseesseesssesssassseesseesssenssesnses 600
36.1.1. Advantages of Using PL/PZSQL ......ccoooiiiiiiiiiiiieeeeeeeeeeene 601
36.1.2. Supported Argument and Result Data Types........ccceeeveevieneniencnienienenene 601

36.2. Tips for Developing in PL/PZSQL....c..cociiiiiiiiiiienieee et 602
36.2.1. Handling of Quotation Marks ...........ccceecteririinienenienieneeieneeeese e 602

36.3. Structure of PL/PZSQL...ccuiiiiiiiiiiieiieieeete ettt sttt 604

30.4. DECIATALIONS .....uveuviiiiiieiieieeitetest ettt sttt ettt et e st sbe et e b s bt e bt sbeenaesbeennens 605
36.4.1. Aliases for Function Parameters ............cocoveevenerienienieenicncniencneeicnceeenee 606
36.4.2. COPYING TYPES .veveenriieiienieniteieeieetet ettt sttt ettt bbb 608
30.4.3. ROW TYPES..eeetieiiiieiieiieiieeteeitestteste ettt e st e satesbeesatessaesabeensaessaessseensaenseenens 608
30.4.4. RECOTA TYPES weeerurieiieiieiiieeieeieeitte ettt ettt et e satesbe e e saeesebeenbeeseesens 609
36.4.5. RENAME.....oiiiuiriiitiieieieiietiete ettt sttt eae e saess et sae s b s eneen 609

30.5. EXPIESSIONS ....eeuvieiiieieeiieriteeteeteesttestesteesbeesitesateesbeenseesstesabeesseenseesaseenseeseesssesnsesnsens 610

30.6. BaSIC SAtEMEILS......eetirieeiiriieieniieienteetente ettt et et ettt vt e e saeesnesbe e e e bt saeeaesueennens 611
36.6.1. ASSIZNIMENL ..uveeiiiiiiiiieiiie ettt ettt ettt e st e st et e st e sate st e ebeesbeesebeenseenseesans 611
36.6.2. SELECT INTO.uiiiisiisieiiuiiriiriieieienientinesueteae e eseesesnesaessessesssnssaessessessensennes 612
36.6.3. Executing an Expression or Query With No Result...........cccooceeviiniiinennnnnne. 613
36.6.4. Doing NOthing At All ......cooiiiiiiiiiieeieeeee ettt 613
36.6.5. Executing Dynamic COmMmAands ...........cceceerieriernieenienienieenieenee e 614
36.6.6. Obtaining the Result Status........c..ccceeieieriinieeninieieeecee e 615

36.7. CONLIOL SUCLUTES ...c..eeeutieiiieiieeteeriteeite ettt ettt ettt sbt e st e bt e sbe e sabesbeesbeesabesaneeabeas 616
36.7.1. Returning From a FUNCHioN...........ccooiiiiiiiiiiiiiiccc e 616

30.7. 1.1, RETURN .uttiiteeiteeieetteette sttt et sete et et e sbte st st e bt e satesateebeesaeesaeeens 616
36.7.1.2. RETURN NEXT w.eeeteerueenuterureesreenseessaeesesseesseesssessseesseessesseessessseeseeens 616
36.7.2. CONAItIONALS ...eeevieiieiieiie ettt esteeteete et e st eeaeebeeseaeeseeesbeesaesseessseenseeseesens 617
30.7.2.1. TFE—THEN ettt ettt ettt et e e s bt st s e e b e satesat e ebeesaeesaeeeas 618
36.7.2.2. TF—THEN=ELSE .eetttruteterueeutenteeteeteseeetentesteentesseeneestesseensesseensansesneenes 618
360.7.2.3. IF—THEN=ELSE TF.iiitittiieientertieienteetentesstentesieesesteeseentesseenaesueeneens 618
36.7.2.4. IF—THEN-ELSIF~ELSE .icctesttsterttetentieienteeieentesseeeesteeseensesseenaesaeeneens 619
36.7.2.5. IF—THEN-ELSEIF~ELSE ..eectettrtetenteetenieeieentesieetenteeseentesieenaesneeneens 619
36.7.3. SIMPIE LOOPS ..ttt st 620
30.7.3.1. LOOP ettt sttt e 620
30.7.3.2. EXIT oottt ettt ettt et sttt st 620

XV



36.7.3.3. CONTINUE ...etttteeeeerrreeeeeeirreeeeeeitareeeeesrreeeeeestsseeeeessssseesenstrseeeseessrseeeens 621

30.7.3.4. WHILE coooviieiiiieiecee ettt s 621

36.7.3.5. FOR (INLEZET VATIANE)....ccuvierueeriieriieeieeieentteeieeieenteesateseeeseesasesnsesnseas 622

36.7.4. Looping Through Query Results ..........ccccceerieriiiiniiinienieiieeceeesieeeeeeeee 622
36.7.5. Trapping EITOTS .....c.eovuiiiiiiieeieeiteeteee ettt ettt st e 623

30.8. CUISOTS.c..eentiiienreiieitete ettt et ettt ettt et ae st e s bt e et e eseessesaeesaesaeesnesseeaeensesneennesaeennens 625
36.8.1. Declaring Cursor Variables............ccccoieieriirienieninieieneeeee e 625
36.8.2. OPening CULSOLS ....c..ovuieiiriiriieieniieiett oottt ettt sae et sne s ene e eaneans 626
36.8.2.1. OPEN FOR QUEI Y eeuvteeeurreriuveeasrreessereesaseeesseeesssssessseessseesssessssessssens 626

36.8.2.2. OPEN FOR EXECUTE .iecueruieieienieerereeeeneeseensesneesnesseeseesseeneesnesmeennens 626

36.8.2.3. Opening a Bound CUrsor..........cceceniiiieniiieiiiniciee e 627

36.8.3. USING CUISOIS. ....eueeueitieiieiteeiieieeteeite et estesteseeetesbeesteteeseeneeseeeneesaesseeneesseeneenes 627
36.8.3. 1. FETCH tutitiiiiii ettt e s 627

360.8.3.2. CLOSE ettt ettt sttt sttt et 627

36.8.3.3. RetUrning CULSOTS ......cccuerueruierieriieientieienieete et ee sttt sae e 628

36.9. Er1ors and MESSAZES .....c..coveueruiruiriirieieieieiteiisiestesteeentee et sttt ere s sae s saenn e eae 629
36.10. TrigEEr PrOCEAUIES .....c.eeruiriieieiieiieieeitete sttt ettt ettt s s 630
36.11. Porting from Oracle PL/SQL.......cccociiiiiiiiiiiiiiieeee ettt e 635
36.11.1. Porting EXamPIEs .......ccccevirienieniieiiiieieie ettt 636
36.11.2. Other Things to Watch FOr..........ccccooiiiiiiiiiiiiieceec 641
36.11.2.1. Implicit Rollback after EXCEpPtions.......c..ceceevvererrienierienencenieneeens 642

36.11.2.2. EXECUTE suetiieuieiteiieteteeetee ettt sttt st 642

36.11.2.3. Optimizing PL/pgSQL Functions........cc.cceccevereerieneneenencencnennens 642

30.11.3. APPENAIX..tiiriiiiiiiiiiiieiie ettt e ete ettt e st e ste et e e satesttessbeebeesseesnseenseenseenens 642

37. PL/Tcl - Tcl Procedural LanguUaZE.........ccccueeveeriiereenieiieenieentesieesieesieesseesseesaeesnsesseesseessnenns 646
37,1 OVEIVIBW .ottt ettt ettt ettt st sttt ettt sae et e she e b e bt s bt et saeenaenueennens 646
37.2. PL/Tcl Functions and ATZUIMENES .........cecuterreerierieeieenieenieeieesieesieesseesseesseessnesssesses 646
37.3. Data Values in PLITCL......cocoiiiiiiiiiiiiciieccectcseec ettt 648
37.4. Global Data in PLITCL ....cooiiiiiiiiiiiiieiecetccrectetceecte ettt e 648
37.5. Database Access fTom PL/TCL ...c..cocuoiiiiiniiiiniieieieececceneceeetete e e 648
37.6. Trigger Procedures in PL/TCl ......coouiiiiiiiiiiiiiieecctee ettt 650
37.7. Modules and the unknown COMMANd......c..coceerueriecienieiieniinienieneereeeeete e 652
37.8. Tcl Procedure NAMES ......c..coceevueriieiiniieieieneeienieeetesteeeete e ene e ene e eaee st saeenesaeennens 652
38. PL/Perl - Perl Procedural Language............cocueevueerieniiiiieniienieeeieesieesite et 653
38.1. PL/Per] Functions and ATGUMENLS...........coerieruerieieniieeeiieeenesieeresieeeeneseeesnesneennens 653
38.2. Database Access from PL/PET] .........cocoviiiiiiiiiiiiiieceeeete e 656
38.3. Data Values in PL/PETL.........cocoiiiiiiiite et 658
38.4. Global Values in PL/PET] .........cocooiiiiiiiiiiiieneeetete ettt 658
38.5. Trusted and Untrusted PL/Per] .........cocooiiiiiiiiiiiieeeetceeeeeeeeee e 659
38.6. PL/PEIL TIIZEETS ..veeeueeeiieiiteeiteeieeit ettt ettt ettt st ettt e nees 660
38.7. Limitations and MisSing FEAtUIES .........ccccerieririieiieniieieie e 661
39. PL/Python - Python Procedural Language.............ccccccoiiiiiniiiiiiniiiiic e 663
39.1. PL/PythOn FUNCLIONS ....c..eoueuiiiiriiriinieieicteitettsestetceete ettt s e 663
39.2. Triger FUNCHIONS ...cc.evviieiieiieiiiiiitisteietetetet ettt e e 664
30.3. DAtabase ACCESS ...ccuveueruieriiriieientieitenteette et sitestesbeeete st e s e et eueestesbeestesbeestentesaeenaesbeennens 664
40. Server Programming INTEITaCE .........cocueviriiriiiiiiiiiiiec et 666
40.1. Interface FUNCHONS .......ooueiiiiiriieiiieeteeeteert ettt et 666
SPILCONNECT c.coeiiiiiiieeeeeeeeeeee ettt e e e e e e e e e e e e e e e aeeeeteeeeseesessesesssnanans 666

xVi



SPI_PUSI .ttt st st 669

N o I 070 o T OO OO O OSSOSO PP 670
SPI_EXECULL....uevteeiiieeeitieeeiee et e ettt e et eeetteeetteeestbeesasaeessseeesssseessseeessseeensseeenssaeessenns 671

N o B ) 2RSSR 674
SPL_PIEPATE.....c..eeiiiieiiiiieieteeteet ettt ettt et e ae et ne e r e 675
SPI_ZELargCOUNL ......cc.eiiiieiieiiiieiecet ettt ettt s 677
SPL_getargtyPeid......cc.coieieiiniiiiieieieeeet et e 678
SPILiS_CUISOT_PLAI ..utiiniiiiiiiiiieiteeee ettt sttt e 679
SPIL_EXECULE_PLAN....ciiiiiiiiiiiiieiteeeeteet ettt ettt st e 680

N o IS (ST o OO OSSO U U PTOPRRRRRPPION 682
SPI_CUISOT_OPEIL.c..eiuiiiiiiiieeieeiteeee ettt et ettt sttt e st st beesaee 683

SPI CUISOT_fIN. ..ot e e e e e e e e e e e e eeeeeeeseeeeaessesanaes 685

SPI CUISOT_TEUCH ..t e e e e e eeeeeeeeeeeeeaeeseenaes 686

SPI CUISOT _ITIOVE ...ttt e e e e e e e e e e e e e e e e eeeeeeeeeeeseeeesaesssanees 687

SP L CUISOT _CLOSE. ..ttt e e e e e e e e e e e e e e e e e e e eeeeeeeeseeeeseesssanaes 688
SPL_SAVEPIAN ...ttt ettt 689

40.2. Interface SUPPOrt FUNCHONS ......coouiriiiieriiiieienceieee ettt e 690
SPI U NAMIE ...eeieiiiiieeeeeeeeeeeeeee ettt e e e e et e e e e e e e et e et eteeeeeeeseeeeseeneaaaas 690
SPIL U NUIMDET c.ceiiiiiiieeeee ettt e e e e e e e e e a e e e et eeeeseesessesesssnanaes 691
SPI_ZEIVALUE ..ottt ettt sttt et st 692
SPI_getbinval .......coueiiiiiiiiiiiitete et 693
SPI_GEIEYPE .ttt ettt ettt 694

N o I 0114 o3 Ua F USRS 695
SPI_gELIEINAIME ......eeiniieiiieiieiiecte ettt ettt et e st e st e st e ebeesaeeseaeenseenseenens 696
SPI_ZENSPNAIME. .....eeuiieiieeiieitesite et et et te et e et et e sitesabeesbeesaeesatesabeenseesseessseenseenseesnns 697

40.3. MemOry ManaQZEMENL ......cccueeruieriierierieeieenienteesteesieesresseesseesseessseesseesseesssesssessseesans 698
SPI_PAIlOC ..ttt ettt ettt st st enbeeaeeseee 698
SPI_TEPAIIOC ...ttt ettt sttt st e aeeseee 700

S _PITEE. ..ottt et sttt e b e b seee 701
SPI_COPYLUPIE ...ttt ettt st e e s e st e b ebeesaee 702
SPI_TEIUINTUPIE ...cvviiniieiiieieeieecte ettt et sttt et e e e bee e 703
SPL_MOAITYTUPIE ...ttt st e 704
SPI_ETEETUPIE. ...ttt et s 706
SPI_fretUPLabIe. ... .cooueiiiiiiiiiiieiieeeetete ettt s 707
SPILTEEPIAN.....c..tiiiiiiie et s 708

40.4. Visibility of Data Changes..........ccccoceeveririerieninieieeee e 709
40.5. EXAMPIES ....ooviiiiiiiiiieiieeeeeeet e et e 709
VI. Reference 713
L. SQL COMMANGS.......uiiiiiiiieiieeeiee ettt ettt e e e ete e e e e e e e e eeaaeeeeteeeeeaeeeeaeeeenteeeeateeeenns 715
ABORT ... ettt et e e e e et e et e et e e ta e e e te e e teeeeans 716
ALTER AGGREGATE ........ooioeeeeeee ettt et e 718
ALTER CONVERSION ... ..ottt et e e et e et e e eans 720
ALTER DATABASE ...t ettt et e et e e e e e te e e eaaeeeeans 722
ALTER DOMAIN ...ttt ettt e e e et et e e et e e e eta e e e vaeeebeeeeaseeenns 724
ALTER FUNCTION .....ooiiiiiiiiie ettt ettt et et e et e e e ete e e eveeeeteeeeaseeeans 727
ALTER GROUP ...ttt et e et e e et e e e vae e e veeeeaseseans 730

xvii



ALTER INDEX .....cooiiiiiiiiiiiiiiiiieecete ettt st 732

ALTER LANGUAGE........cccoiiiiiiiiiiiicnee s 734
ALTER OPERATOR .......c.ccoooiiiiiiiiiiiiiiiccicc e 735
ALTER OPERATOR CLASS. ..ot 737
ALTER ROLE ....c.ooiiiiiiiiiiiiiic et s 738
ALTER SCHEMA ..o 741
ALTER SEQUENCE .........cooiitiiiiiiieiit ettt ettt s s 742
ALTER TABLE ..ottt st s s 744
ALTER TABLESPACE ......c.oootiiiiiieit ettt s 752
ALTER TRIGGER ......ccoiiiiiiiiiie ettt st s 754
ALTER TYPE. ...t st s 756
ALTER USER ..ot st st s 758
ANALYZE ...t s st e 759
BEGIN ...t s 761
CHECKPOINT ..o 763
CLOSE ... e e s s e 764
CLUSTER ... e s s s 766
COMMENT ... e e s s s 769
COMMIT ..ottt sttt st sttt st 772
COMMIT PREPARED.......ccooiiiiiiiiiitiiceceeseseteee sttt s 774
COPY .ttt sttt s 775
CREATE AGGREGATE .......ccoioiiiiiiiiiteeeeeteseeeee ettt s 783
CREATE CAST ...ttt sttt s e 786
CREATE CONSTRAINT TRIGGER .......ccccccoiiiiiiiiiiiiieiniecceeese e 790
CREATE CONVERSION .....ccooiiiiiiiiiiiieiceeeeeeese et 791
CREATE DATABASE .....cooiiiiiiiiiieeceee et s 793
CREATE DOMAIN......ooiiiiiiiiiiii ettt s e 796
CREATE FUNCTION ........ooiiiiiiiiiiiiititecccseee ettt s 799
CREATE GROUP........coiiiiiiiiiiiiiiiceeee et s 804
CREATE INDEX.....c.oooiiiiiiiiiiiiiinceee st s 805
CREATE LANGUAGE ......ccoooiiiiiiiiiiiiciciccce e 808
CREATE OPERATOR .......coiiiiiiiiiiiiiiiciccce e 811
CREATE OPERATOR CLASS ...t 815
CREATE ROLE......ccoooiiiiiiiiiiiiiicee e s 818
CREATE RULE.......coiiiiiiie ettt sttt sttt 823
CREATE SCHEMA ...ttt sttt s 826
CREATE SEQUENCE ......c..oooiiitiiiiieieteeee ettt st s 829
CREATE TABLE ..ottt st s e 833
CREATE TABLE AS ...ttt 844
CREATE TABLESPACE .........oooiiiiiiee e s 847
CREATE TRIGGER .......ccoooiiiiiii et e s 849
CREATE TYPE ... s 852
CREATE USER ... .o s s 858
CREATE VIEW ..ot s s 859
DEALLOCATE .......oiii e s s 862
DECLARE ... e s 863
DELETE ...t s s 866
DROP AGGREGATE.......cocoiiiiiiiiiiieicceteese ettt s 868

XViii



DROP CAST ..ot st 870

DROP CONVERSION .....c.ooiiiiiiiiiiiiieccin et 872
DROP DATABASE .....oiiiiiiiiiiiiiiccs et s 873
DROP DOMAIN ..ottt s 874
DROP FUNCTION ....ccoiiiiiiiiiiiiiiiiiiieccies ettt s 875
DROP GROUP ..ottt s 8717
DROP INDEX ..ottt ettt ettt ettt e sne st sne s eanens 878
DROP LANGUAGE .........coooiitiiiieet ettt st sae s e 880
DROP OPERATOR ..ottt st s e 881
DROP OPERATOR CLASS ...ttt e 883
DROP ROLE ......coiiiiiiieeeeeee ettt sttt st s 885
DROP RULE ..ottt s sttt s 887
DROP SCHEMA ...t st s s 889
DROP SEQUENCE ...ttt s s 891
DROP TABLE ...ttt s s 892
DROP TABLESPACE ... .ot e s 894
DROP TRIGGER .......ooooiiiiiiiiiiiii e s 895
DROP TYPE... ..o e s 897
DROP USER ..ot e s 898
DROP VIEW ..ottt sttt et ettt s st n et 899
END Lo e 900
EXECUTE ..ottt st s st 902
EXPLAIN ..ot s 904
FETCH ...ttt s st 907
GRANT Lottt s 911
INSERT ..ottt st 917
LISTEN L.ttt s st 920
LIOAD ..t e 922
LIOCK . s 923
IMOVE.....ooiiiii et s 926
INOTIEY .t s 928
PREPARE ..o 930
PREPARE TRANSACTION .....ccoociiiiiiiiiiiiiiii et 932
REINDEX ..ot s 934
RELEASE SAVEPOINT .......ootiiiiiit ettt sae st s 937
RESET ...ttt st st st e ae et sne e enens 939
REVOKE ..ottt st st s 941
ROLLBACK ...ttt et st st s 944
ROLLBACK PREPARED .....c..coiiiiiiiiiiiiieit ettt s 946
ROLLBACK TO SAVEPOINT .......ooiiiiiiiiiiieietee et s 947
SAVEPOINT ...t et s s 949
SELECT ... ettt a e st 951
SELECT INTO ...ttt e s 963
ST e e e e s 965
SET CONSTRAINTS ... e s 968
SET ROLE ..o e e s 970
SET SESSION AUTHORIZATION........cceiiiieieiiniinienienieeeiee ettt 972
SET TRANSACTION ..ottt sttt sttt s e 974

Xix



START TRANSACTION ...ttt ettt ettt ettt sttt et st et e esaaesnneeabeas 979
TRUNCATE ...ttt ettt ettt et sttt et e st st e bt e satesabe e bt enbeesatesnbeenseenane 980
UNLISTEN. ...ttt ettt ettt st ettt st e bt e satesab e e bt e bt e sateenbeenbeenane 981
UPDATE ...ttt ettt ettt st e bt e sat e st e bt e bt e sateebeebeesaee 983
VACTUUM .ottt st b ettt st et e s bt s bt e bt e s bt e sabeebe e bt e sabesaseeabeas 986

I1. PostgreSQL Client APPIICALIONS .......cc.couerieiirieieniieieieeeeteee ettt e saeeanens 989
16 L1 1] 1S5 16 Lo SRR 990

o3 (T 1< a Lo SR 993
CIEALBLATIZ ...ttt ettt e st et a e sa e et sne s eanens 996
CTEALEUSET ..ceeeteteeeeeettteeeeettteeeesatteeeeeaatteeeeaaaseteeeeaanbeeeesenateeeeesassteeesansbteeesansaseeeeannsnaeessannns 999
AIOPAD .ttt ettt sttt sttt e st aeeae e 1003
ATOPLANZ ..ottt ettt ettt a et b et esae e st e besat et e e beeae e bt eseebesaeenseebeenteteene 1006
ATOPUSET ..ttt ettt sttt ettt ettt ettt s ae st ettt eaeeb e b s s see e eneebesae st esnenee 1009

ECPZ e euveemreenreeritee et et e s bt et e bt e s bt e ab e e bt e bt e e h b e e a et e bt e bt eh et e bt e bt e e bt et e e bt e heesa bt e be e beesaneebeeneens 1012
PECOMIIG .ttt ettt ettt e et b st a e e et e bt s bt et e bt e st et e st e teshe et e beeateteene 1014
PEQUITID ettt b sttt st e bt s bt et e bt e st et eaeenbeshe et e e b e enteteeae 1017
PEAUMPALL ... ettt st et st b e et 1024
PE_TESEOTE ..ttt ettt ettt ettt et e st eat et e eb e et e e bt e st e bt e bt e bt sbeemb e bt eb b e bt ebeenbesbeenbenbeenaenteene 1028

S ettt bbbt bbbt eh e et e bt et bt et b eatenteeae 1035
TEINAEXAD ..ottt ettt et sttt eae 1060
VACUUIMIAD. ...ttt ettt sttt ettt s bte bt sbe et e s b ebt et e saeenaesaee 1063

1. PostgreSQL Server APPIICALIONS ........ccevueeieriirieriirieienieeteieeitete sttt sttt 1066
1103106 Lo T OO TP RRUUURRPPRRRPRRNt 1067
IPCCIBAN ..ttt ettt eat e et e st e e ab e et e e s st e sateesbeeaeensaesabeenbeenbeeseseenseenseens 1070
PE_CONLIOLAALA ...vveenieiieeieeieeete ettt ettt et et et e st e s abeesbeesbeesabeenbeenseesaseenseenseens 1071

PR CL et ettt ettt et e a e e st b e e bt e bt e nhtesnb e e be e beesebeebeenaens 1072
PE_TESEEXIOE .eteneieiieeiie ettt ettt et sat e et et e sa b e s bt e be e bt e sa b e e be e baesabeebeeaeens 1077
POSEETES .eentteeuieeteettesite et et e s tteeabe e be e bt e satesabeeabeesstesateeabee bt esatesabeebeenstesabeenbeenseesateenbeeseens 1079
POSTIMASTET «..eeeeuteentte sttt et et et e et e et e bt e sabeeate e bt esttesabeeabeesstesatesabeensaenseesabeenseenseesaseenseenseens 1083

VIL. Internals 1089
41. Overview of PostgreSQL INternals ..........coceeviiriiiiieiniieniieieeieenite ettt 1091
41.1. The Path Of @ QUETY .....coviiiiiiiiiiieeieee ettt et st 1091

41.2. How Connections are Established ..........ccccocovieiiiiiciiiiieeee e 1091

41.3. The Parser STAZE ......cevueermiirieiieiiteeteee ettt ettt sttt e 1092
G T T o ¢ U 1092

41.3.2. Transformation PrOCESS........ccvieciieiiiiieeiiieeiiee ettt e e e e 1093

41.4. The PostgreSQL Rule SYSTEM ......ccoueriiiiiiinieniiiieerterte et 1093

41.5. Planner/OPtilmiZer ... ..cc.eeueeueeuieieeeeierteeetee ettt eteste st ete st eseesteeseenaeseeetesbeeneeneeene 1094
41.5.1. Generating Possible Plans............cccocoiiiiiiiiinieieeeeeee e 1094

4.6, EXCCULOT .....uieitieitieeieetiesiteete et esteeesteebe e teessseesseesseesssassseessaeseesseessseenseeseesssesseenseens 1095

42, SYSEIM CALALOZS ...ttt ettt ettt ettt et et s bt et e bt s bt et e sb e e s te bt eseenbeebeentesbeeatenaeene 1097
2.1 OVEIVIEW ..voiierieieiiie et et et e e ete e e et e e et e et e e ete e e eaee e eteeeeaaeseeataeeeateeeesseseesseeenseneans 1097

VAP Yo H=Yo [ b ot =Yo =X o =N NU SO U U PRPIRPTR 1098
. 3 DG M ettt ettt ettt e e et e eta e e e taeeeaeeeetaeeattaeeaateeeaateeeatraaans 1099

2. DG AMOP cuteieettieeetee e et e eete e ee e e et e e e et e e et ae e e ett e e eta e e etaeeetaeeeaeeeetaeeattaeeaateseaateeeareaaans 1100

S DG AP T OC i iiutiiiitieeeiteeeeteeee e e eetreeeetreeeetaeeeetteeeteeeetaeeeteeeeaeseebaeeattaeeatbeeenateeetraaans 1101

XX



Vi ST oY H=N o o e L= PR USSR RR SRR 1101

V0 B Yo HE=N o o o o L ot = S U USRS ORR SR RRRRPRT 1102
Vi T o Yo H=N 0Nl o Ks DUUUU U U USSR USSR PRR 1105
42.9. DG _AUL N MEMDE TS ceutriieeieiirieeeeeirreeeeeeireeeeeeeitaeeeeeeirreeeeesiarseeeeesiareeeeeeetsseeseesssreeeeas 1106
42.10. PG_AULOVACUUI ..ceitrreeeeeirreeeeeeitrreeeeesiareeeeeesisreseeeeirseeseesissseeseesisreseesesisseeseesssseeens 1107
A2 L1, DG CASE tttieiieiitieeeeectee e eeette e e ee et e e e e ettt e e e e e aae e e e eeeaaeeeeeetraeeeeenaraeeeeetraaaeeeaarraaeas 1108
N W <Te B =X = BRSSP 1109
2/ 1 B oTe HieTol s k= uliar= 1 o} iR USRS 1112
V0 U B oTe B eTo Y s A= af = oY o WU 1113
Z Y B T oTe B e oY =Y o Y- =SOSR 1114
2 KT oo e 1= o 1=Y o BRSSP 1116
Vi W '<Ye fle [=Y=Toh ok o) ol Ne ) HUUNNNNN SRR O NN U U SRRSO USSP U UPRRROPPU 1117
2. 18, PG ANIAEK teeiieitiiieeeeeitieeeeeeiite e e e eeetre e e e e eae e e e e eeaae e e e e e ar—aaeeaataaaaeeaaaraaaeeanraaaeeaarraaaens 1118
220 KO B eTe B B oY s =S ok I =TRSO 1120
42.20. PG_LANGUAGE werreeeeerrrreeeeirreeeeeeitreeeeeatrreeeaeiissesaeaassssseseasssssssssassssesseesssssseseesssseneens 1120
Vi) B 'eYe R = ale 1=Ye) oy 1= o) NN U RSO USSP PR PP 1121
42,22, PG L1 SEENET wurteieeiitiieeeeeittee e e eeette e e e e ettt e e e e e rbae e e e e e taaeeeeeabaaaaeeanaaraaeeeatbaaaeeaarraaaens 1122
42,23, DO _NAMESPACE tereeeirrreeeeeirrreeeeeiareeeeeairrreeeaaiisseseesassssesssassssssessassssesessasssseessesssseeses 1123
2 DG 0P CLAS Suuiiiiitieeetieeeiteeeeteeeetteeeeteeeeae e et e e eete e e etae e eteeeeaeseetaeeetaeeeateeeaaaeeeatraaans 1123
2. DG OPETATOT tiitiieeiieeeieeeeteeeetteeeeteeeeetaeeeetteeeteeeetaeeeteeeeaeseeataeeatteeeeasesenareeenreaaans 1124
42.26. PG P IEEMP LAt iiiiiiiieiieeeieeeetee ettt e eette e et e e et e e eteeeeteeeebeseeteeeaabaeeetbeeenabeeetraaans 1125
2 DG DT OC ttieeiieeetee ettt et e ettt e ettt e et e et e e e e e e eta e e e taeeebeeeetaeeatbaeeaabeeenareeetraaans 1126
R TR oY B o =) o I ol = SO USRS 1129
ViSRS B oYe BT o 1=} o 13 o Lo NN RSP RRRRRRRRRR 1130
VR O oY B o= Nl =1 i I < USROS 1131
ViR Y B oY B =1 M =Y -] o T Y1 WU USRI 1134
ViR YR o Yo B o o K o 1% BN U OSSR ORI 1134
R TR o Ye B o4 < = DT U U USROS 1135
42.34. SYSTEM VIBWS ..eeeiurieiieiiieeieeiteniteste et ebeesitesiteebeesatesatessbeesaeesseesaseenseenseesasesseenseens 1141
ViR IO I o Ye Hle 5 oo V) < HUUUU USSR RR USRI 1142
R T Y o Ye B I o U L= 4= Y= TN U USRS R SRR 1143
AR W <Ye B N Yo 3= DUTU N U RSO UUSROUPSTRRRRPTT 1143
42 .38, PG _PIrePATET_KACES tiiittirereeeeiirreeeeeiireeeeeeiireeeeeeiirreeseesirreeeeesisreeeeeesrreeeeesirreeeens 1146
Zi R 1S B e Yo B ol Y K=Y DU NN OO U USSR OT TR PRT 1146
42,40, DG TULES ieeitiieiiieestieestteesteeestreeeseteessaeeesteeasaeessaaessseaeasseeaaseeesstaeasseeennseeasreaans 1147
VIR 5 W oTe BN =TS ol ol o Lo 1= TSRS 1148
E Y R <Te BE=Y s =Y L) USRS 1149
R B oTe B = o= o SRS 1149
R i oTe B oY < 1 =Y = USROS 1152
A, PO IS T wutieieetiiie e ettt e ettt e e e ettt e e e e ettt e e e e e e aa e e e e e e atae e e e ettt e e e eenataaaeeaaraaaeeearraaaeas 1152
2 4. PO VA EWS eeeetieeeteeeetee et e ettt e e e e e e et e e e eae e e e e e e eteeeeteeeeneeeanraeans 1153
43. Frontend/Backend ProtoCOL...........cuiiiiiiiiiiiieiieeiee ettt et e et e e e s 1155
A3, 1. OVEIVIEW ..uvierieieiieieesieestteeieeteesteeasteeseesseesseessseesseesssessseasseesseesseesssesssessseessseessessseens 1155
43.1.1. MeSSaZING OVEIVIBW......ccueeriiitieiientieiieieeitentesteeite e etcentesteeseeseesseeeesbeeneeneeene 1155
43.1.2. Extended QUEry OVEIVIEW .......cccuevuirieruiriieienieeiienieettete e eteseesieeaesbeeaeeneeene 1156
43.1.3. Formats and Format Codes ..........c.cceoueririeneninienienieiesieetene e 1156

43.2. MESSAZE FLOW ..ottt sttt st b et 1157
4321 STATE-UD ettt sttt bbbt 1157

XXi



43.2.2. STMPLE QUETY ..eveeniieiieiiieeieeite sttt ettt et e steebe e bt e sabessbeebeesaaesasesnne 1159

43.2.3. Extended QUETY .....cocceeriiiiiieiieiieeieeiterite ettt sttt ettt ete et e e sare e 1160
43.2.4. Function Call..........cccccoiiiiiiiiiiiiiiiiiiicccee s 1163
43.2.5. COPY OPETALIONS ..c.uveiurieieiiieniieeieeitesiteeieeieesteestesseenbeesatesseebeessnesasesnne 1164
43.2.6. Asynchronous OPETationsS ........c.cueevueeruieriieriierneenieesieeeeesteesteseeesseeseeseesnne 1165
43.2.7. Cancelling Requests in Progress..........covvevierieeniinienieenieenieeeeeeesieseeee 1166
43.2.8. TeTMINAION c..eeuteiiieiieiiteeieeiee sttt et sb e st e e e sb e e st e st e ebeesaaesaeesane 1166
43.2.9. SSL Session ENCryption........c..ccceeieieriinieneninieieneeiesie e 1167

43.3. Message Data TYPES .....coeeuieiiiiiiiiieiiceceteee ettt e 1167
43.4. MeSSage FOIMALS .......cc.coiiiiiiiiiiiiiicie ettt s 1168
43.5. Error and Notice Message Fields ... 1183
43.6. Summary of Changes since Protocol 2.0..........ccooirieiiiiiiinieeeeee e 1184
44. PostgreSQL Coding CONVENLIONS ........ccuerueerierueriierteetieteeteetenteestestesteeeesseeseessesseesesseensenseens 1186
44 1. FOIMALTING ...ovieniiiieeieiteeiteteet ettt ettt ettt et e sttt e sbesbt et e sb e estente e st enaeseeensesbeeneenteene 1186
44.2. Reporting Errors Within the Server............coeeiriiieniiiiiesieeseecee e 1186
44.3. Error Message Style GUIAE.........ooeeieriiieiiniieieie ettt 1188
44.3.1. What S80S WHETC......c.coruiiiiiiiitiiiesieeiee ettt st 1189
44.3.2. FOIMALLIIIZ ..c.vettenteteeiiente ettt ettt st ettt et et eb et e st et e aesbeeaesbeeneeeeeae 1189
44.3.3. QUOtation MATKS.......ccueiiiiiieiiieciiee ettt ettt ee e e eaveeeetreeeeareeeeanaeen 1189
44.3.4. TUSE Of QUOLES. c..eeuvetieiteiieiieienteeite ettt sttt st eite b e sb et saeesaesbeeaesbeeasenaeene 1190
44.3.5. Grammar and PUNCTUALION. ....c..eevertirieriirieeierieeteieet et ete et eae s eaeenieene 1190
44.3.6. UPPEr CASE VS. LOWET CASE ....veveruieiieiieiinieeienieeitenieeteeite st eiee s e eae s eanenaeene 1190
44.3.7. AVOId PASSIVE VOICL....ceveriiemreieritetinitetesieete st eitente ettt satesae st eaesbeeanenaeene 1190
44.3.8. Present VS PASE tBIISE....evuvierueerreeriieeieerieeriteeteesseesieesseesseesseessesssesnseessesssesnne 1190
44.3.9. TYPE Of the ODJECT...ceuiiiiieieeiieriieeieetterite ettt et ettt e st be et esaesaneenee 1191
44.3.10. Brackets.......cccooueiiiiiiiiiiiiiiiciccce e 1191
44.3.11. ASSEMDIING EITOT TNESSAZES. ...cuveereerrerrrerreesieenreesteesseenseessessseenseesssesssesnne 1191
44.3.12. Reasons fOr €ITOTS ...........ccivuiviiiiiiiiiiinicicict e 1191
44.3.13. FUNCHION NAMES ......ooviiiiiiiiiieieieiieise ettt 1192
44.3.14. Tricky Words t0 aVOId .....c.covuierieiiieiriieniieeieeieenite ettt et saesare e 1192
44.3.15. Proper SPEIIiNg ......cc.cooiiiiiiiriiirieeieeterite ettt ettt st 1192
44.3.16. LocaliZation..........cccccuviiiiiiiiiiiiiiiiiicncctc s 1193

45. Native Language SUPPOTL........cecuierierieriiieriteniiente ettt ettt et sbe e et esbeesabesbeenbeesasesaseenne 1194
45.1. FOr the Translator .........c.ccceoieiiinirienenieeceee ettt et 1194
45.1.1. REQUITEIMENLS ......oovieiieiiiiieieiieiete ettt ettt et e st eaneneene 1194

5. 1.2, CONCEPLS....ooniiiieiritieieenie ettt ettt ettt et et ae e ae st enesaeeanennene 1194
45.1.3. Creating and maintaining message catalogs ........c.cceceeveevuieieenereeneneeceenneene 1195
45.1.4. Editing the PO fIles ......cccoiririirieieieininenetctcteeeeetc et 1196

45.2. For the Programmer.............cccoociiiiiiiiiiiiiiiieie et 1197
45.2.1. MECHANICS -..uvenvieniitieiiesie ettt ettt ettt b ettt et esaesseetesbeeneeneeene 1197
45.2.2. Message-writing guidelines .......c.ccceceevererienieienieeninineneneeeeeese e 1198

46. Writing A Procedural Language Handler ............cocoeiiiiiiiiiiiiieieeeecee e 1200
47. Genetic QUETY OPLIMIZET ....c..eiueeuieiieiieieiteete sttt te ettt te et et e tesbe e e sbeeseensesseenbesbeeneeneeene 1202
47.1. Query Handling as a Complex Optimization Problem...........c.ccccceeveenincinenenenene 1202
47.2. Genetic AIZOTItRIMS ......ooiiiiiiiiiieeiee ettt ettt st 1202
47.3. Genetic Query Optimization (GEQO) in PostgreSQL ...........cccoevirvienininenenienene 1203
47.3.1. Future Implementation Tasks for PostgreSQL GEQO ........cccccoceevineriennne 1204

47.4. Further REading .........coiiiiiiiiiiiiiiieietee ettt et 1204

xxii



VIIL

48. Index Access Method Interface Definition .............coovvvviieiiiiiiiiieiiiiee e 1206

48.1. Catalog Entries fOr INAEXES ......cooveirieriiiiiienieeieeieesteete ettt st 1206

48.2. Index Access Method FUNCHONS. .......c.eoieiiririiniiiecnecieecrctcecee e 1207

48.3. INAEX SCANMING ....eovviiiieiiiiieeiteiteete ettt ettt st e st e bt e bt e st e ebe e beesateebeebeens 1210

48.4. Index Locking ConSiderations...........eeveerveerienieenieenienieeieesieesieesreeseeesieesaeesseenaeens 1211

48.5. Index Uniqueness CheCKS.........eoiiirieriiiniiinienieeieesteste ettt sttt e 1212

48.6. Index Cost Estimation FUNCLIONS...........covierieriiiiiiiienieeieeeeee et 1213

4O, GIST INAEXES ....veeueeitieiteniteeite ettt ettt ettt ettt e sat e et e bt e s bt e sabe s bt e bt e sabeeabeebeesbbesaneenne 1216
49. 1. INITOAUCTION «..eniiiiieeieeitteeiteete ettt ettt ettt e s e st e bt e bt st e be e bt e sateebeebeens 1216

49.2. EXIENSIDILILY ....evitiiiieiieiiientestcctecet ettt ettt st s e 1216

49.3. IMPIEMENTATION ......eouiiiiiiieiiiiieiese ettt st s ae e 1216

49.4. EXAMPIES ...ttt e et e e e 1217

49.5. Crash RECOVETY......cocuiiiiiiiiiiiiiiii e e 1218

50. Database PhySiCal StOTAZE .......ccoertirierieieiriinienenteietetet ettt sttt sbenene 1219
50.1. Database File LayOUL.......c..cccecueiririiniinienieieininenesetereteie ettt s nene 1219

50.2. TOAST ettt sttt st ettt sa e 1220

50.3. Database Page LayOut .........coceoviiiiiiiiiiiiiiicnicntceectesec ettt 1222

51. BKI Backend INtEIface. .........coueiiiriiiiiiiiieieiietec ettt 1226
51.1. BKI File FOIMAL «....ocuiiiiiiiiiiiiiiiiicceeet ettt s 1226

51.2. BKT COMMANGS ......oouiiiiiiiieiiiiiitetitcetee ettt 1226

51.3. Structure of the Bootstrap BKI File........cccccoceiiiiriniiiiniiiiiiiencncenceeceeee e 1227

514  EXAMPLE ..cnviiiiiiiieiieieettete ettt ettt ettt sttt st 1228

52. How the Planner USes StatiStICS.......ccevueieieiiiirieniiieieieie sttt st 1229
52.1. Row Estimation EXamples.........cccerveriieriiiinienienieeieeneenteeieeieesieesve e eieesevesne e 1229
Appendixes 1234
A. POStEreSQL ErrOr COAES ....covviiiiiiieiieeiieeieeieeite sttt ettt ettt st et sate st eebeesaaesanes 1235
B. Date/Time SUPPOTE c..eeeeeiieiieiieeiieeiteriteete ettt et e st e bt et e sibessbeebeesbtesabesabeebaesasesaseebeesseenanes 1242
B.1. Date/Time Input INterpretation .........cueeveeriierienieeiienienie ettt 1242

B.2. Date/Time Key WOTdS........cocueiiiiriiiniiniieitesieete ettt st st e 1243

B.3. HiStOry Of UNILS ...coeuvieiiiiiieieeieeiteeteete ettt sttt et st e st et iee s 1259

C. SQL KEY WOTAS.....eeuieeiiiitieiteeiie ettt ettt st ettt ettt et e s bt e st e s bt e beesabesateebeenaaesanes 1261
D. SQL CONOIMANCE ....ccuvviiiiiieiiieeeiieecieeestee et e eteeereeeeaeesseeesseeesssesessseeessseeesssessnssessssenans 1282
D.1. Supported FEAtUIES .....c..coveiiriieiiiieieientceteecte ettt s 1283

D.2. Unsupported FEAtUIES ..........c.cceeoiiriiiiniiiieieniieice ettt 1294

E. REIEASE INOLES ....veeiieiiiiiteiteete ettt ettt ettt et sttt e b e st e s ate e bt e sbaesaaeeane 1303
E 1L REICASE 8.1 ..ottt ettt sttt st e 1303
EL L T OVEIVIBW ..ottt ettt ettt e 1303

E.1.2. Migration to Version 8.1 ........cccoeciririierenieierieeieie et 1304

E.1.3. Additional Changes ...........cccceeierieriiienieiieiesie et 1307

E.1.3.1. Performance IMprovements ...........cccceoeeeerienieesienienceneseesieseeieiene 1307

E.1.3.2. Server Changes ......c.cccocueeveerieniiiieeicenee e 1308

E.1.3.3. Query Changes......ccccceeuiiieenieniiiieeneeniee et 1309

E.1.3.4. Object Manipulation Changes ..........ccccceceevereeienenieeneneeieneeieniene 1309

E.1.3.5. Utility Command Changes...........ccecererierienieeieniinieneneenieneeeeniene 1310

E.1.3.6. Data Type and Function Changes .........c..ccccceeevuerenieeneneenenenieniene 1310

E.1.3.7. Encoding and Locale Changes..........cc.ccecueruereeienineeneneenienenieniene 1312

E.1.3.8. General Server-Side Language Changes.........cccccocevceeveneencnenuenenne 1313

XXIil



E.1.3.9. PL/PgSQL Server-Side Language Changes..........c.ccceveereerverruennnene 1313

E.1.3.10. PL/Perl Server-Side Language Changes...........ccocceevveerververvuennneens 1314

E.1.3.11. PSQl Changes .......cevueeruiiiiieniieniieeieeieesite sttt sttt s 1314

E.1.3.12. pg_dump Changes...........cceeceeruerrieeniienienieenieeniee e eieesiee e eveeieens 1315

E.1.3.13. libpq Changes .........ccecueevueeriienienieeniienie ettt 1315

E.1.3.14. Source Code Changes ..........ccoceevueereenierieenieeniiesieeieesiee e e 1316

E.1.3.15. Contrib Changes .........cccccceeveevuimieieninieieneeieie e 1316

E.2. REIEASE 8.0.4 ..ottt sttt sttt st e 1317
E.2.1. Migration to version 8.0.4 .........ccccoiiiiiiniiiiniiiei e 1317
E.2.2. ChAn@ES .....ooiiiiiiiiecee e e e 1317
E.3.REIEASE 8.0.3 ...ttt e st 1319
E.3.1. Migration to version 8.0.3 ..........ccccceviririninenieeeeeenenenrereeeeeeerese e 1319
E.3.2  Chan@es .....ooouiiiiiiiiicec e e 1319

E 4. REIEASE 8.0.2 ..ottt et st 1320
E.4.1. Migration to version 8.0.2 ........ccccoriiiereiiiienieeieie sttt 1320
Ei4.2. CRANEES «..ueeeiiiiiiiieeee ettt ettt 1321

E.5. REIEASE 8.0.1 ..ttt sttt et st b et 1322
E.5.1. Migration to version 8.0.1 .....c.ceceriiienirinieniinieie et 1322
E.5.2. CRANZES ..cveeniiiieierteeete ettt ettt st 1323

E.0. REIEASE 8.0 ..ottt sttt et ettt 1323
ELO.1. OVEIVIEW ..ottt ettt st et sttt 1323
E.6.2. Migration t0 VErsion 8.0 ........ccccecueririenieririeniinieniesieetenie ettt 1324
E.6.3. Deprecated FEatures ...........cccoeeieririenieninieniinteniescetenie ettt 1326
E.0.4. CRANZES ..c.ueeiiriiiiirieeieieeitet ettt sttt 1326
E.6.4.1. Performance IMpProvements ............cooeerverieeneeneesieenieenieesnesveenneens 1327

E.6.4.2. Server CRANZES ......ccceevieriienienieeieerieeeite st eteesiee e eteesieeseresseenaeens 1328

E.6.4.3. QUErY CRanges......ccocueriieriienieenieeieenitenitesieeieeniee e ereesieeseresveenaeens 1330

E.6.4.4. Object Manipulation Changes ........ccccceecverieenieeneenieenieeneesveeveeieens 1331

E.6.4.5. Utility Command Changes..........cocceeveerieriieenieeneenieeieenieeseeeeeeeeens 1332

E.6.4.6. Data Type and Function Changes ...........cc.cceeveereerieenieeneenienieeiens 1333

E.6.4.7. Server-Side Language Changes ..........ccoceevvveevieeneeniennieeneenieeieeieens 1334

E.6.4.8. PSQl Changes .........cooueriiiiiiiniieniieieesieerite ettt 1335

E.6.4.9. pg_dump CRhanges..........cooceereerieriieniienie ettt st 1336

E.6.4.10. libpq Changes ..........ccccecvevierieiiinieienieneerenieerete e e 1336

E.6.4.11. Source Code Changes ...........cccceeeeveeruerienienieieniieeeneeseesreseeeeneene 1337

E.6.4.12. Contrib Changes .........c.cccceeeeviinieiienenieieneeeete e e 1338

E.7. REIEASE 7.4.9 .ottt ettt sttt st 1338
E.7.1. Migration to Version 7.4.9 .........ccccociriiiiiiiiiniiieineeeee e 1339

E. 7.2 ChANEES ... 1339

E.8. REIEASE 7.4.8 ...ttt ettt sttt sttt 1339
E.8.1. Migration to VErsion 7.4.8 ........ccccovieiererieienieeeee ettt 1340
E.8.2. CRANZES ...uveetiiiiieieeee ettt et 1341

ELO. REIEASE 7.4 7 .ottt ettt sttt et 1342
E.Q.1. Migration to VErsion 7.4.7 .......ccccceeueoiririninenieeeeeene sttt s seennes 1342
E.9.2. CRANEES ...uveeeieiiiieeeee ettt 1342

E.10. REICASE 7.4.0 ..ottt ettt sttt e sae bbb sate e eae 1343
E.10.1. Migration to VErsion 7.4.0 .......ccccoceriereriirieniinienie ettt 1343
E.10.2. CHANZES ..ottt ettt sttt st 1343

XXV



E LT REICASE 7.4.5 ..ttt sttt ettt st st 1344
E.11.1. Migration tO VETSION 7.4.5 ..cc.eiiiiiiiieieeiteniieeieeie ettt ettt 1344

E 11,2, ChanGESs ...ccoueevuiiiiieiieiie ettt ettt ettt ettt et st e e saeesaees 1344
E.12.REICASE 744 ..ottt ettt st st 1344
E.12.1. Migration tO VETSION 7.4.4 ..c..cooiiiiiiieiiieniieeieeie ettt sttt 1344
E.12.2. Changes ....cooeeeiiiiieieieeieeteeie ettt ettt et e 1345

E.13. REICASE T.4.3 .ottt ettt ettt st ettt e ae e 1345
E.13.1. Migration to Version 7.4.3 .......ccccocirvieriniriieniieeeeee et 1345
E.13.2. Changes ....c.ooeeiiiiieieiieeceeeee et 1345

E T4, REICASE T4 2 ettt ettt ettt sttt st s sae e 1346
E.14.1. Migration tO VETSION 7.4.2 ..c.coiiiiiiiieiiieniteeieeie ettt ettt 1346
E.14.2. Chan@ESs ...cccueeeuiiiiieiieiee ettt ettt ettt e 1347

E. IS5, REICASE 7oA. 1 ettt ettt sttt e 1348
E.15.1. Migration to Version 7.4.1 ......ccccoviriiiiiieienieeiee et 1348
E.15.2. Changes ....c.ooioiiiiiiiiiic e 1349

E.16. REICASE 7.4 ...ttt ettt st b ettt nae et sbeeate e eae 1350
EL16. 1. OVEIVIEW .utiiiiniiiiieiieitieitee ettt ettt et sttt et et 1350
E.16.2. Migration to VEISion 7.4 ......c.cceceririeneniieienieeitenie ettt 1352
E.16.3. CHANZES ..ottt sttt sttt 1353
E.16.3.1. Server Operation Changes ...........ceccevereerienieeienieneeneneenieneeeeniene 1353

E.16.3.2. Performance IMprovements ............ccoeeverueneerienieneeneneenienenienienne 1354

E.16.3.3. Server Configuration Changes .........c..ceccevuereeieniereeneneeneneneenienne 1355

E.16.3.4. QUery Changes........ccoccecuerierieniinieienieniteienieeitenieeieenaesieeee s senenieene 1356

E.16.3.5. Object Manipulation Changes .........c..ceceeevereeieneneeneneeneneneenienne 1357

E.16.3.6. Utility Command Changes.............ceceerverrueereeneessieerieeneesvesveenneens 1358

E.16.3.7. Data Type and Function Changes ............ccceveeveervieeneeneenvesnieenens 1359

E.16.3.8. Server-Side Language Changes ........cccccoevveeveeneerieenieeneenieeieeieens 1361

E.16.3.9. PSQl Changes .......cevveviiiiiieniienieeieeieesite sttt st ete et e s eve e 1361

E.16.3.10. pg_dump CRanges..........cceceereerrieereenienieeieenieeseeeieesiee e sseeaeens 1362

E.16.3.11. lIbPq CRANEES ...coovveiiiiniieiieniieeieeieesite sttt sttt st 1362

E.16.3.12. JDBC Changes.......ccc.cevueerueeriersieenieeniesieenieenieeseeenieesieesenesvesaeens 1363

E.16.3.13. Miscellaneous Interface Changes ...........ccecceeveerieeneeneeneesnienieene 1363

E.16.3.14. Source Code Changes .........ccocceevueerieenierieenieenieenieeieesiee e eveeieens 1364

E.16.3.15. Contrib Changes ...........cceeeevierierienieniieienieereieeeeseeseereseeneneene 1364

E 17 RElCASE 7.3. 11 ettt sttt ettt s et 1365
E.17.1. Migration to version 7.3. 11 .....ccccocioiiiiiiiiiiiiiieceeceeeeeeee e 1365
E.17.2. Changes ....c..ooueeiiiiieieieeeeeee e e 1366

E.18. RelEaSE 7.3.10 ettt sttt ettt s s 1366
E.18.1. Migration to Version 7.3.10 .......ccoceeiiriiiniiiiineeteeeee et 1366
E.18.2. ChanGes ...cccueeeuiiiiieiieite ettt ettt ettt e 1367

E.19. RELEASE 7.3.9 ..ttt ettt sttt e 1368
E.19.1. Migration to Version 7.3.9 ........cccccevrininineneniiienententeeeeteeeese e 1368
E.19.2. Changes ....c..ooioiiiiiiiiie e s 1368

E.20. RelEaSE 7.3.8 ..ttt ettt sttt et st bttt 1369
E.20.1. Migration to Version 7.3.8 ......ccccooiriimiriiieniieieie et 1369
E.20.2. CRANZES ..ottt ettt et sttt et 1369

E.21. ReICASE 7.3.7 .ottt ettt ettt st st b ettt 1369
E.21.1. Migration to VErsion 7.3.7 ...cccceceririeneniiienieeiteie ettt 1370

XXV



E.21.2. CHANZES ..veeuvieiieiieeiteiie ettt ettt ettt ettt e be e st e st e b e saaesanes 1370

E.22. ReICASE 7.3.0 ..euiiiiiiieiieieeieeitetestc ettt ettt ettt st st 1370
E.22.1. Migration tO VETSION 7.3.6 .ccc.covuiiriiriiiiieniieeieeie ettt ettt st 1370
E.22.2. Chan@ES ...cooveeiuiiiiieiieiee ettt ettt ettt ettt ettt beesaae i 1370

E.23.ReICASE 7.3.5 ..ottt sttt e e 1371
E.23.1. Migration to VErsion 7.3.5 ...cc.cccooiiiiininiiiiniieeeieec e 1371
E.23.2. Changes ....c.ooeeiiiieieiieiecteeieeeeet ettt et e 1371

E.24. REICASE T.3.4 ..ottt ettt st ettt st ettt st e 1372
E.24.1. Migration to Version 7.3.4 .......ccccocioiiiiiiiiiienieiee e 1372
E.24.2. Changes ....c.ooeiiiiiiiieiieeeee e 1372

E.25. ReIASE 7.3.3 ..ttt ettt ettt sttt et st e ae e 1372
E.25.1. Migration to Version 7.3.3 ......ccociiiiieeiieiesieee et 1373
E.25.2. Chan@Es ...cccueeeuiiiiiiiieite ettt ettt ettt ettt et 1373

E.26. REICASE 7.3.2 ..ottt et ettt st b ettt et st be et 1375
E.26.1. Migration to Version 7.3.2 ......ccceiiiienenieienieeieie et 1375
E.26.2. CRANGZES ...couviiienieiieeeteee ettt sttt sttt nee s 1375

E.27. ReICASE 7.3.1 oottt sttt et st s b et 1376
E.27.1. Migration to Version 7.3.1 ...ccccociriiiininiiienieeeie et 1376
E.27.2. CRANZES ..ottt ettt ettt 1376

E.28. REICASE 7.3 ..ottt ettt sttt ettt nae sttt 1377
E.28. 1. OVEIVIEW ..uviiiiniiiiieiieieeitetesie ettt ettt st ettt ettt 1377
E.28.2. Migration to VErsion 7.3 ......ccccoceririeneniinienienteie ettt 1378
E.28.3. CHANEZES ..eonviiieniiiieeieieeiteeeee ettt sttt et 1379

E.28.3.1. Server OPeration ...........ccceereerveenieenieeneesieenieeneesseesseesseessesssessseens 1379
E.28.3.2. PerfOrmance ..........c.ccoceuevierieiiiniiiinienteienieetcie ettt 1379
E.28.3.3. PriVIIEEES....ceeiiiiieiieeiieiieeiteete ettt sttt ettt sebe e enaee s 1380
E.28.3.4. Server Configuration...........cceeueevieeneenieiieenieeneesieeieesieeseeeveeieens 1380
E.28.3.5. QUETICS ...eiiiiiieiiieeiiee ettt ettt et e vt e e veeeseb e eeareeesabaaeereeenens 1381
E.28.3.6. Object Manipulation ...........ccoecuervieeriienieiieenieeniiesieeieesiee e 1381
E.28.3.7. Utility COMMANGS....c...eerrieriiiriirieeniienie ettt st sieesite e 1382
E.28.3.8. Data Types and FUNCHONS .........cocueeriinieiiiiieeie et 1383
E.28.3.9. InternationaliZation ............cccceeueeeeveerierienienieiienieeeeneseeneseenenene 1385
E.28.3.10. Server-side Languages ........cccccevveerueenierieerieenie e 1385
E.28.3.11. PSSl e 1385
E.28.3.12. TIDPQ cveeuveniienieieeieeie sttt ettt s ene 1386
E.28.3.13. IDBC ...ttt et sttt 1386
E.28.3.14. Miscellaneous Interfaces............ceeveevierierneeniiiienieneenieeeeeene 1386
E.28.3.15. SOUICE COAE.....eeemuiiiiiiiiiiieniiieieeterte ettt 1387
E.28.3.16. CONUILID ..oeneieiiieiieieeeeeee ettt s 1388

E.29. RELASE T.2.8 ..ttt ettt ettt sttt st 1389
E.29.1. Migration to Version 7.2.8 ........cccccevririninenienieieenenesrereneeeneeresre e seenees 1389
E.20.2. Changes .......cccooouiiiiiiiiiiee e 1389

E.30. REICASE 7.2.7 ..ttt sttt ettt et st be et 1390
E.30.1. Migration to VErsion 7.2.7 .......cccceeueviririninenieieieeneniesseteneeeneeresresaeseenee 1390
E.30.2. CRANZES ..ottt ettt et sttt et e nae s 1390

E.31.REICASE 7.2.0 ..ttt ettt sttt et sttt 1390
E.31.1. Migration to VErsion 7.2.0 ......cccceocirviereniinieniinieiesieetenie et 1391
E.31.2. CRANZES ..ottt st ettt et 1391

XXVi



E.32. REICASE 7.2.5 ..ttt ettt st sttt 1391
E.32.1. Migration tO VETSION 7.2.5 ..ccueiiuiirieeieeiieniieeie ettt sttt st 1391
E.32.2. ChanGes ...cccueevuieiiieiieiie ittt ettt ettt ettt e e st st e esaee e 1391

E.33.REICASE 7.2.4 ..ottt sttt et st 1392
E.33.1. Migration tO VETSION 7.2.4 ..c..coiuiiriiiiiiiieriieeieeie ettt 1392
E.33.2. Changes ....cc.ceeuuieieiiieiie ittt ettt ettt ettt e saees 1392

E.34. REIASE 7.2.3 ..ottt ettt ettt et ettt sttt e 1392
E.34.1. Migration to Version 7.2.3 .......ccccocirviiiiririieniieeeieee e 1393
E.34.2. Changes ....c..ooeeiiiiieieiieeeeeeeee et 1393

E.35. REICASE T.2.2 ..ottt ettt ettt st ettt 1393
E.35.1. Migration to Version 7.2.2 .......ccccoceovieiiiiiieniieieieee et 1393
E.35.2. Changes ....c.ooiiiiiiiiieiiee e e 1393

E.36. REICASE 7.2.1 ..ottt sttt ettt et st be et 1394
E.36.1. Migration to Version 7.2.1 .....ccccceeieirininineneieieeneneesrereeeeeneeiesie e 1394
E.30.2. ChANZES ....eoveviriieieieiieiieientestetet ettt ettt sttt 1394

E.37. REICASE 7.2 ..ttt ettt sttt ettt ettt b e ettt 1395
E.37. 1. OVEIVIEW ..ttt ettt sttt sttt et nae s 1395
E.37.2. Migration to VEISion 7.2 ......cccceceririenieniiiienieeiienie ettt 1396
E.37.3. CRANEZES ..ottt sttt et st 1396

E.37.3.1. Server OPeration .........cccccoeeeeruenerienenieienieetenteeieeneesieeeesieseneneeene 1396
E.37.3.2. PerfOrmance ..........c.coeeueriinieiiniiieniestetesicetee et 1397
E.37.3.3. PriVIIEZES.c..eoveeiirieeienieeitcicetteteseetee sttt 1397
E.37.3.4. Client AUthentiCation .........c..ceceveeeerierienieneeienieneene e 1397
E.37.3.5. Server Configuration..........co.cecueeeeeerenienieneeienieneeneneeeesiesnenienne 1398
E.37.3.6. QUETIES ...eeouviiiiiieeiiie ettt et e e e e eve e e eebeeeeareeesabaeeereeennns 1398
E.37.3.7. Schema Manipulation ..........ccecueevueerienieiiieenieeniesieeieeniee e eveeeeens 1398
E.37.3.8. Utility COMMANS......c.eerrieriieniieiieniienienieeieeniee e eieesieeseeeeaeeeeens 1399
E.37.3.9. Data Types and FUNCHONS .........cocvevierieiiiiiiieie e 1399
E.37.3.10. Internationalization ..........c.cceceveevienerienienieiieniieeene e 1401
E.37.3.11. PL/PZSQL ..ottt st 1401
E.37.3.12  PLIPEIL ..ottt 1401
E.37.3.13. PLITCL oottt st 1401
E.37.3.14. PL/PYtRON ...coueiiiiiiiiiiciieicceececeeeeecte et 1401
E.37.3.15. PSSl 1402
E.37.3.160. TIDPQ veeueetieeieieeieeie sttt sttt s ene 1402
E.37.3.17. IDBC ...ttt st 1402
E.37.3.18. ODBC ..ottt st 1403
E.37.3.19. ECPG ...ttt st 1403
E.37.3.20. MiSc. INterfaces......cceeverieeuieiinieieie ettt 1404
E.37.3.21. Build and Install...........ccccoeiiiiiieiieeeeeee e 1404
E.37.3.22. SOUICE COAE ... .ueeuiiiiiiiieiieniiiiieeeetc ettt 1404
E.37.3.23. CONUID ..coiiiiieieeeteeee ettt st 1405

E.38.ReICASE 7.1.3 ..ottt ettt et ettt 1405
E.38.1. Migration to version 7.1.3 ......cccoiiiiiiiiiiieeeee et 1405
E.38.2. CHANGZES ...eouviiienieiieeeteete ettt sttt et ae s 1405

E.39. ReICASE 7. 1.2 ..ottt ettt ettt et st bt 1406
E.39.1. Migration to Version 7.1.2 ......ccccovirieneninieniiiiere et 1406
E.39.2. CHANEZES ..ottt sttt ettt et 1406

XXVii



E.40.

E.41.

E.42.

E.43.

E.44.

E.45.

E.46.

E.A47.

E.48.

E.49.

E.50.

E.51.

E.52.

E.53.

E.54.

E.55.

E.56.

REIEASE 7. 1.1 oottt ettt et s 1406
E.40.1. Migration to VErsion 7. 1.1 ..ccccooviiriiriiiiiienieeieeieesteee ettt 1407
E.40.2. ChAN@ES ...cooveeiuiiiiieiieiie ettt ettt et ettt et e st e esaeesanes 1407
REIEASE 7.1 .ttt e st 1407
E.41.1. Migration tO VETSION 7.1 c...eevuiiiiiiiiiiieiiieniteeieeeeteete ettt 1408
E.41.2. ChanEEs ....coveeuieiiriieieieeieeteeieeeert ettt e e 1408
REICASE T.0.3 ..ttt sttt st st 1412
E.42.1. Migration to version 7.0.3 .......ccccociiiiiiiiiiiinieieeeeeeseeeeee e 1412
E.42.2. Changes ....c..ooeeiiiiiiieiieeeeeeeee et 1412
REICASE T.0.2 ..ttt st s e 1413
E.43.1. Migration to version 7.0.2 ........cccoccoiiiiiiiiiiiiiiiiee e 1413
E.43.2. ChaN@ES ...cooveeiiiiiieiieite ettt ettt ettt et 1413
REICASE T.0.1 .ottt st st e 1413
E.44.1. Migration to version 7.0.1 ......ccccoriiiiiiiieieieee e 1414
E.44.2. CHANZES ...eeovieiiiiiieiieiee ettt ettt sttt ettt e e s 1414
REILASE 7.0 .ttt bttt st 1414
E.45.1. Migration to Version 7.0 .........cccceviiieniniiieniieieie et 1415
E.45.2. CRANEZES ..ottt ettt et sttt st 1415
REIEASE 0.5.3 ..ttt e 1421
E.46.1. Migration to Version 0.5.3 ......ccccoviiiininiiieniinieeneeteneeeee e 1422
E.46.2. CHANEZES ...ooviiieniiiiieiieieeiteteete ettt sttt sttt e 1422
REIEASE 0.5.2 ..ttt e 1422
E.47.1. Migration to Version 0.5.2 ......cccccoceriereniriieninienineeienieeeeesieeteee e 1422
Eo47.2. CRANZES ...eevieeiieiieiieiie ettt sttt ettt st sttt e st e s abeebaesstessteenbaenanesnnes 1422
REICASE 0.5.1 .ttt sttt st 1423
E.48.1. Migration to VErSion 60.5.1 ...c.cooiiriiriiiiiieriieeieeieerteere ettt 1423
E.48.2. CHANZES ...eeuvieeiieiieiieiie ettt sttt ettt et et s e sttt e st esate e baenaaesanes 1423
REICASE 0.5 ...ttt ettt s 1424
E.49.1. Migration tO VETSION 6.5 ....ccceeiiiriiriiiiieniieeieeie ettt ettt st 1425

E.49.1.1. Multiversion Concurrency Control ..........ccceeeeveerieenieeneeneensiennieens 1425
E.49.2. ChanES ...cooveeiuiiiiieiieiie ettt ettt et ettt ettt e e st st e beesaee i 1426
REIEASE 6.4.2 . ..ceiiiiiieeeeetee ettt e 1429
E.50.1. Migration to VETSION 60.4.2 .....ccceiriiiiiiiiiieniieeieeieesite ettt sttt 1429
E.50.2. Chan@es .....c.ceeuuerieeiiieiieiieeieette sttt ettt ettt ettt e e s e 1429
REICASE 0.4, 1 ..ttt sttt ettt st st 1429
E.51.1. Migration to version 6.4.1 .......cc.cocooviiiiiiiiiniiiieincceeeeeeeeeeeeee e 1430
E.51.2. Changes ....c..ooueeiiiiieieieeeeteeeeee et s 1430
REICASE 0.4 ...ttt sttt 1430
E.52.1. Migration to VErsion 6.4 ..........ccccoiiiiiiiiiiieniieeeiee et 1431
E.52.2. Chan@Es ...cccueeeuiiiiieiieiie ittt ettt ettt sttt 1431
REICASE 0.3.2 ..ttt st naeas 1435
E.53.1. CRANEZES ..ottt ettt ettt sttt ee s 1436
REIEASE 0.3.1 ..ttt ettt ettt ettt nae s 1436
E.54. 1. CRANEZES ..ottt sttt ettt nee s 1437
REICASE 0.3 ...ttt sttt ettt 1437
E.55.1. Migration to VErsion 0.3 .........ccceririiriniiiieniieieie ettt 1439
E.55.2. CRANEZES ..ottt et sttt 1439
REICASE 0.2.1 .ttt sttt e s 1442

XXViil



E.56.1. Migration from version 6.2 to version 6.2.1........cccceevevevviienieniienieeneeneenne. 1442

E.56.2. ChHANES ...coovieiuiiiiieiieiie ettt ettt ettt ettt e be e st esate e b e saaesanes 1443
E.ST7.REICASE 6.2 ... s 1443
E.57.1. Migration from version 6.1 to Version 6.2.......c...ccecuevvveriieeneenienieenieeneennne.s 1443
E.57.2. Migration from version 1.x to Version 6.2 .........c.ccocceeerervveneneeieneneennenne 1443
E.57.3. Chan@es ....cvooueeiiiiieieieeieeteeiet ettt e et 1443

E.58. REIEASE 6. 1.1 .ottt ettt sttt st e 1446
E.58.1. Migration from version 6.1 to version 6.1.1..........cccccconiriiiiniiniinineennene. 1446
E.58.2. Chan@es ....c.eoeuieiiiieieiieeteeeeee et 1446

E.59. REICASE 6.1 ittt ettt sttt st et 1446
E.59.1. Migration to version 6.1 .........cccccoiiiiiiiiiiiiiiiiiii e 1447
E.59.2. Changes .......coooiiiiiiiiiiici e e e 1447

E.00. REICASE 6.0 ..ottt ettt sttt ettt e e see e tesbeente e ene 1449
E.60.1. Migration from version 1.09 to version 6.0........c.ccccocceerenvenenevcninenennennee 1449
E.60.2. Migration from pre-1.09 to version 6.0 ........c..ccccceevererinenienieneeneneneneenes 1449
E.00.3. CRANGZES ....oviiieieiiieieiteet ettt sttt sttt e e 1450

E.O1. RelEaSE 1.09 ...cneiiiiiiiiiiee ettt sttt et st beeete e 1452
E.02. RelEase 1.02 ...coueiiiiiiiiiiieiei ettt ettt st ettt st st b et 1452
E.62.1. Migration from version 1.02 to version 1.02.1......ccccoccenirienininiineneennne. 1452
E.62.2. Dump/Reload Procedure ...........ccoccoveevereiieninieniineeienieeeeesieeeie e 1453
E.02.3. CHANEES ...eouviiienieiieeiieieeiteteeteee ettt sttt sttt 1453

E.03. Release 1.01 ....cooiiiiiiiiiiiiecccet ettt 1454
E.63.1. Migration from version 1.0 to version 1.01.......cccocceveniniinininniininienee 1454
E.03.2. CHANZES ...eevieiiieiieiieriie ettt sttt ettt ete st e st e sabeesbaesasessteenbeensnesnnes 1455

E.04. Release 1.0 .....ccooiiiiiiiiiiiiiiccceecee e e 1456
E.04.1. CANZES ...eovieeiiiiieiieiie ettt sttt ettt sttt et e st e st ebaesaaessteenbaenanesnnes 1456

E.65. Postgres95 Release 0.03.......cocioiiiiieiiiiieieeieeeesteste ettt sttt e 1457
E.05.1. ChANGES ...coveeiuiiiiieiieiie ettt sttt ettt ettt et s e e b e st e sateebeenaeesanes 1457

E.66. Postgres95 Release 0.02.......cocuviiiiiiiiiiiienieeieeieeiteste ettt st 1460
E.06.1. CHANZES ...ccviiiuiiiiieiieiie ettt ettt ettt sttt et e st e st e beesaeesaees 1460

E.67. Postgres95 Release 0.01.......oocuiiiiriiiiiiiieieeieeieeteete ettt st 1461
F. The CVS REPOSIIOTY ....oouviiiieriiiiiieiteeiteete ettt sttt ettt sttt et st e et e bt e sateesbeebeesabesaneenne 1462
F.1. Getting The Source Via Anonymous CVS ......cociiiiniiiiiiiiiietceeeeee e 1462
F.2. CVS Tree Organization .........c..cccccoeeceerierieienieienieeeenieseenesieeeeesseeeessesueenessesenesenne 1463
F.3. Getting The Source Via CVSUP....c..cccceviiiiiininiiieeeeseereeeeete et 1464
F.3.1. Preparing A CVSup Client SyStem......c..coceecieruieieniinieieneeeereneeeeie e 1465
F.3.2. Running a CVSup CHENL .......oouiiiiriiiiiiiiiiieiiceeeeeeeeee e 1465
F.3.3. InStalling CVSUP...ceeiiiiiieiiiee e 1467
F.3.4. Installation from SOUICES .......ccceeueririerieriieierie et 1468

G. DOCUMEIEALION ...ttt ettt ettt ettt e s et e et et e s bt es e et e ebeenseeaeeneesaesseensesseeneenseeneeneeeaes 1470
G.1. DOCBOOK ..ottt ettt st sttt sttt et 1470
G.2. TOOL SELS ..ttt ettt ettt e bt st st e beesabesaae et 1470
G.2.1. Linux RPM INStallation.........coceeeieririenenieieieeee et 1471
G.2.2. FreeBSD INstallation.........cccoeieriiniiieneiiieieieecee et 1471
G.2.3. Debian Packages .........ccceeeeiiriiiiniiieieieeieee et 1472
G.2.4. Manual Installation from SOUICE.........c.ccoervieririeniniiieneeeeeeeeee e 1472
G.2.4.1. Installing OpenJade .........c.ccoceeveriiieninieiieeeeeeeeeeee e 1472

G.2.4.2. Installing the DocBook DTD Kit .....cccoceevuiniiieniniiienieienienceee, 1473

XXIX



G.2.4.3. Installing the DocBook DSSSL Style Sheets .........cccccevevcveneneenncnne. 1474

G.2.4.4. Installing JadeTeX .......ccoouiiriierieniieieereerie ettt 1474

G.2.5. DeteCtion DY CONEigUIE..iiiniirierieeieeiieniteete et esiteete sttt e sitesateesbeesaeesaees 1474

G.3. Building The DOCUMENTAION ...c.veeriiirieriiiiiieniienie ettt sttt 1475

G3.1 HTML .o 1475

G320 MANPAZES ..onvieeenrerieeireieeieeteete ettt ettt ettt et st st e 1475

G.3.3. Print Output via JAdeTeX .....c.coceevveririieniiniiiiiiieieeeeeeceeeeeeeeee e 1476

G.3.4. Print Output via RTF.......c.cocooiiiiiiiceeeceeeee e 1476

G.3.5. Plain TeXt FIles.......cooiiiiiiiiieieeeeeceteeeee ettt 1478

G.3.6. Syntax Check .......cooiiiiiiiiiiii e 1478

G.4. Documentation AUtNOTING ........cocueeiiiriiriiiieerieete ettt 1478

G.4.1. EMAcS/PSGML.......coucoiiiiiiiriintiicicteete ettt 1478

G.4.2. Other EMAcs MOAES ...c..cooueruiiniiiniieieiieeniieeieeie ettt 1480

G.5. SEYLE GUIAEL ...ttt ettt b et e it e e e e 1480

G.5.1. Reference Pages ........ccooeeiiiiiiiiiiieee et e 1480

H. EXtErNal ProOJECES ...c..eeuieiieiieiieiietee ettt et st sb et e e e 1483

H.1. Externally Developed INterfaces.........cocoveeuerieiieninieneiieienieeesie e 1483

H.2. EXEENSIONS. . ..etieuiiieeiieteeiteteet ettt ettt sttt sh ettt st e bt bt et bt eat et s et enaesbeembenbesneenteene 1484
Bibliography 1485
Index 1487

XXX



List of Tables

4-1. Operator Precedence (dECIEASINE) . ....c..eeuerterieriirieriiniirtenieeitet sttt sttt ettt bbb e e eae 31
Bo1. DA TYPES vttt ettt ettt ettt h ettt bttt s b et h e bttt e he et s he et b e e bt et bt et naeeneen 88
82, INUIMETIC TYPES. .. ettt ettt ettt ettt sttt st et b e bt et s bt et esbe et e bt ebt et e sbeenaenaeeneen 89
8-3. IMOMELATY TYPES .eeuvreiiieuiieiienite et et estte st et et e sateebe e bt estbesabesabeebaesssessseenbaensaesssesnseenssensaesnseeseenseesns 93
8. CNATACTET TYPES .eevreuiieniieiieeite ettt et e st et et e satesbe e bt e sbtesabesaseebeesssessseenbeesssesssesnseensaenseesnseenseenseenns 94
8-5. SPECIAl CharaCter TYPES ..cuveeeureeuiieiieniieiiieieeite st ete et e st e sbeebeesbeesabessteesbeesssesssesnseesssenseesaseeseenseenns 95
8-6. BINAry Data TYPES ..ccuveeuiiiiieriiieiieitentte sttt st et e e st e st e s teesbeesabessbe e beesstessbesnbeessaenseesaseeseenseesas 96
8-7. bytea Literal ESCAPEA OCIELS .....cccueiruiiriiiiiiiieriieeteeitesiteste ettt e st e ste e beesieesatesnbeesatesseesaseeseenseenes 96
8-8. bytea Output ESCAPEA OCLELS.....cccueireiiriiieiiiiieiie ettt sttt ettt ettt e sttt e st e saeesabe e bt e saeesaneenseenaeenas 97
8-9. DAt/ TIME TYPES.uuteutiiiiiiieeite ettt sttt et stt e et e e e sbt e st e s bt e bt e sabesabe e beesstesaeesabeenstenseesaseensaenseesas 97
8-10. DA TNPUL....eoutiiiiiiii ittt ettt s bt s e et e bt e s st e st e e b e e sbtesatesabeesatenseesaseeseeseesas 99
S-11. TIME TNPUL ..ottt ettt et et e bt st e et e e bt e sab e et e e bt e satesabeenbeesatesnbeenseenaes 100
8-12. TIME ZONE INPUL ...ttt ettt sttt e bt st e bt e bt e st e e st ebeesateeabeenseenaee 100
8-13. Special Date/Time INPULS .....c..coeeiiiiiiieiiieiec ettt st 102
8-14. Date/Time OULPUL STYLES .....cocviriiiieiiiiieiiiieiee ettt ettt et 102
8-15. Date Order CONVENLIONS ........eevviiruiieieirieeriteeteesieesiteete et esttesteesteesbeesateebeesbeesabesseebeesateensesnseenaes 103
8-16. GEOMELIIC TYPLS.. .ttt ettt et s 105
8-17. Network Address TYPES ......ccoueiiiiiiiiieit ettt et s e 108
8-18. cidr Type Input EXamPpIEs ........cocooiiiiiiiiiiiiii e 109
8-19. Object IAENtIfIEr TYPES ..cveevereuieuiriirtiterteteeete sttt ettt ettt eae bbbt eneenes 124
8-20. PSEUAO-TYPES. ..ttt ettt ettt et sttt e b e st s bt e bt e sab e e bt e bt e sat e e b e beenaee 125
9-1. COMPATISON OPETALOTS.....c..cuveureuerierintentetenteirettetestetestetenteteesesteseessessesteststeesesseseneeneesessesaensensensenene 128
9-2. Mathematical OPETALOTS ......cc.ccueuiruiririerieieiieitite ettt et ere st st etese et ettt bese s et st bt sbesaesensenneneene 129
9-3. Mathematical FUNCLIONS .........ccciiiiiiiiiieieeee ettt sttt e sae e enee 130
9-4. TrigonOmMELriC FUNCHOMS .....co.iiiiitiiieiiitietert ettt sttt ettt et st be et e st saeenaesbeeneens 132
9-5. SQL String Functions and OPETAtOrS ..........cc.eeueruirierierieerienieniieniesteete st eteste st ete st eseeseesaeessesaeeneens 132
9-6. Other String FUNCHIONS .....c.couiiiiiiiiiiieiiee ettt sttt sttt et st e saesaeeneen 134
O-7. BUIIt-IN CONVEISIONS ...ttt ittt ettt ettt st et sbe st e e eb et e s bt e st e besbeesbenbeebte et smeenbesbeennens 138
9-8. SQL Binary String Functions and OPETators ...........cccccreeruerierienieneerieneeteniesiteniesieesteseeseeneesieenens 141
9-9. Other Binary String FUNCHONS ......coueriiiiiiniiieiietee ettt 142
9-10. Bit SHrING OPEIALOTS....c..eetiriietirtieitenienitetenteeitenteettete st et esbesbtesteebeestesaeeseestesbeesesbeestensesmeensesbeensens 143
9-11. Regular Expression Match OPerators...........cccueeieeeriereenienenienieneetenieetesiesieestesieeseeniesneeseesieennens 146
9-12. Regular EXPreSsion ALOIMIS .....cccuieruieriirriieriieriieeteeteenttestesteebeesasesstesabeesseesseesnseenseenseesssesnsesnsessses 148
9-13. Regular EXpression QUANTIIETS .......eivieriieriieriiirieeieerite sttt et eete et saeesieesateesaeenseeseteenseenseesens 149
9-14. Regular EXpression CONSITAINES .........eerveerierieriieerieeniiestesteesteeseesesesseesseesseessessseesseesnsesssesssessnns 150
9-15. Regular Expression Character-Entry ESCAPES ......cccvevuiiriiriiiiiiieiieeiteieeteete et 151
9-16. Regular Expression Class-Shorthand ESCAPES .........cocverieriiiiiiiniieniiiieeteee et 152
9-17. Regular Expression Constraint ESCAPES .......cc.uivverviiiriieriieiiieiienieeie ettt sttt st 153
9-18. Regular Expression Back References.........ccovviviiiiiiiiiiiiiiiiiicicciccteteee et 153
9-19. ARE Embedded-Option LEtters ..........cocuieiiiriiiiieiieeitiesieeie ettt ettt st ettt ebe e 154
9-20. FOrmatting FUNCLIONS ........coootiiiiiiiieiiieieeterite ettt ettt ettt st e sbe e bt e st ebeebeesae 157
9-21. Template Patterns for Date/Time FOrmatting ..........c..cocceevenirieiiiniieiinieieneneeieeeeec e 158
9-22. Template Pattern Modifiers for Date/Time FOormatting............cccceceeuerieiienerieenieninieeneeeeneeseenns 160
9-23. Template Patterns for Numeric FOrmatting...........cccccoeeviiiiriiiiinieiiinieieeeeeieeeecec e 161
9-24. £0_char BXAMPIES ...eovuiiiiiiiiiiieitet ettt ettt ettt et sttt et st 162
9-25. Date/TImMeE OPEIALOLS ......ccviruieuiiiieieieiieeteeteeee et et st e et s et sre e e e st e e e aesaeenesae e e esseeneesnesaeennens 163

XXXI



9-26. Date/Time FUNCLIONS .....cocuiiiiiiiieiieiieeieeterite sttt st sttt et sit e sttt e st e sabeesbeesbeesateenseenseenans 164
9-27. AT TIME ZONE VATTANES c..terutiertieriieniiieieestterttesteeteenttesstesateebeesasesssessteesseesseesaseenseenseesnsesnsesnseesnes 170
0-28. GEOMELIIC OPETALOTS ...uveeueierurieteeieeriteeteerttesttestesteesbeesstesaseebeesatesasesabeesseesstesateesseesseesnsesnsesnseesses 173
9-29. GEOMELIIC FUNCHONS .....eiuiiiiiiiiiiiiecieeieeteit ettt ettt sttt sttt e bt e sateebeebeesae 174
9-30. Geometric Type Conversion FUNCHONS ........ccuiviiiiiiiniirienieeieesteee ettt st e 175
9-31. cidr and inet OPETALOTS .....eeertieruieriiieieertteitteete et esteestesteebeesbeesatesbeesbeesaeesabeesbeesbeesnseenbeenseenaes 177
9-32. cidr and inet FUNCHIONS ......ccoviiiiieiiiee ettt e et e e e e trareeeeenarneas 177
9-33. macaddr FUNCHONS ......cuvviie et e et e e e ettt e e e e etae e e e e eeatraeeeeetraeeeeeensraens 178
9-34. SequenCce FUNCHONS ........ccoiiiiiiieieeeete ettt ettt st sae s 178
9-35. 2rray OPETALOLS .....ccueiiiiiiieieii ettt ettt et st eae e e s st e e e ae st eaesaeeaeeaeeneenaesaeennens 183
0-36. Array FUNCHONS ....ctiiiieiieciieieciee ettt ettt et e et e et e et e e s taeeaaeesbe e saesseeesseesseeseessseenseenseensns 184
9-37. AgEregate FUNCHIONS. ......cc.coiiieiriirirtetetete ettt ettt ettt ettt et e e 184
9-38. Series Generating FUNCHIOMNS..........ccccouirieiiiiinirtiieietee ettt sttt e 192
9-39. Session INformation FUNCHONS ...........ccouiiiiiiiiiiie ettt ettt e et e et e e eaeeeens 193
9-40. Access Privilege Inquiry FUNCHONS .......ccoeviiriiiirieieieiiinerenccct sttt 194
9-41. Schema Visibility Inquiry FUNCHONS ......c..ccoeiririirienieieininienceetee e 196
9-42. System Catalog Information FUNCHONS ........cccueiiiiieiiiiiieneeeieeiete e 196
9-43. Comment Information FUNCHONS ........c...cooiiiiiiiiieiii ettt e e e e e e evee e 198
9-44. Configuration Settings FUNCHONS .......c..eiviiiiiiiiriiiieie ettt 199
9-45. Server Signalling FUNCHIONS .....cc.cooiiriiiiiiiiiieetee ettt sttt st s 199
9-46. Backup Control FUNCHOMNS ........ooutrtiriiiiiieniieiieieettete sttt ettt ettt st esaesbeeneens 200
9-47. Database ODbject SiZe FUNCHONS ......coueruiiiiriiiiiiieieie sttt ettt ettt 200
9-48. Generic File ACCESS FUNCHIONS ....c..ceiiieiieiieiiiieieeie ettt ettt et e e e sbeesaeesteesneeenbeenseenens 201
12-1. SQL Transaction ISOIation LEVEIS .........cccuviieiiiiiiiiciiie ettt e e e ve e e e 224
16-1. SYStEM V IPC PATAMELETS. ... eeeuveereetieriieeieeieertesteeteesteesseeseteeseesseesssesseesseenseesnsessseenseesssesssesnsees 271
16-2. Configuration parameters affecting PostgreSQL’s shared memory usage ...........cceevveevveervenvennnen. 275
17-1. SHOTE OPHON KEY ..eeuviiiiiieiieiieiieeie ettt ettt st ettt e sttt et esab e sabeenbe e baesabesnseenbeesasesaseenseas 313
21-1. SEIVET CRATACIET SELS ...eevuviiiieiierieeieette st et et e stteebe et esttesabeebeesbeesabeesseebeesatesnseenseesasesnseenseensns 339
21-2. Client/Server Character Set CONVETSIONS ....ccueirueerieriierrieeniiesieesieenttesteesteesteesteesseesseesasessessseesses 342
24-1. Standard StAtiSTICS VIBWS ..cc.eeruiiriieieiiieniieeieeieesite st eteesttesteebeesbeesate e bt e beesateeseenbeesatesnseenseenans 369
24-2. Statistics ACCESS FUNCLIONS ....c.eivuiiiiiiiiiiiicieeieerite ettt st sttt st et e e 371
31-1. information_schema_catalog_name COIUMNS.........cccovieiieiirieeeeeiieeee e e e e eetrreeeen 466
31-2. applicable_roles COIUMMS ......ccccccooeiiiieeeeeireee ettt e eeere e e eeetre e e e eeetareeeeeetsseeeeesanreeeeeeanreeeenn 466
31-3. check_constraints COIUMNS . .........coiiiiiiiiiiiiiiiiiieeeeeeee e ee e e e e e e e e e e e s s aasaaraeeeeeeeeeas 466
31-4. column_domain_usage COIUMIS .......cccoiiiieiiiiiiee e eecieee e ettt eeeeetreeeeeeetreeeeeenaareeeeeeanaeeeens 467
31-5. column_privileges COIUMIS . ...t ccieeeeree et et e et e e eeaeeseaeessseeesssaeessseeensseesnses 467
31-6. column_udt_usage COIUMMNS .........ccciiiiiiiee ettt e ettt e ettt e e e eetaeeeeeeetreeeeeeearaeeeeeesraeeeens 468
31-7. coLUMNS COIUIMIS ..ottt ettt et e e e e e e e e e e s e s baa s e eeeeeeseeeeeesesesensssssasneneeeesees 469
31-8. constraint_column_usage COIUMNS........cccoiiiiieiiiiiieieciiee ettt eeetre e e e etare e e e e araeeeeas 473
31-9. constraint_table_usage COIUMNS ........ccociiiiiiiieiiiiee ettt e et e e e etrae e e e e aaaeeeeas 474
31-10. data_type_privileges COIUMINS .......ccccciiiii ettt e et e e e e eaaae e e e e naaaeeeeas 474
31-11. domain_constraints COIUMIIS. ......oouuuuueeeee et e e e e e e et et e e e e eeeeeseeeesassaanas 475
31-12. domain_udt_usage COIUMS .........coooiuiiiiieiiiiee et eeete e eeete e e et e e e e eerae e e e eearaeee e e nsaeeeaens 476
31-13. AomMaIins COIUITIIS ...uvvvieiiiiiiiiee et eeee e eeeee e e ee e e e e e eaaeeeesesaaaeeesseaaeeesssaaaseessennasseessasaneeeean 476
31-14. element_types COIUIMMNS ......cccoiiiiiiieiieee et e ettt e e et e e e e rtte e e e eetareeeeearaseeeeenssaeeeseensereeaens 479
31-15. enabled 10168 COIUITIIIS ...t e e e e e e e e e e e e e e et e e e e e e e e eeeeeeeeeeeaeaaaaan 482
31-16. key_column_usage COIUMNS .......ccoeiiiiieiiiiceiie ettt ettt eett e et e eeae e e ete e e eteeeeteeeeaseeeens 482
31-17. parameters COIUMMS .......cccuiiiiiie ettt ettt e e ettt e e et eeetveeeetteeetaeesaeeeeteeeeaseeeesseeeeaseeennes 483

XXXI1



31-18. referential constraints COIUMIS ... ..ottt ettt eeeeeeeeeeeeeeeeeeeeeaanans 485
31-19. role_column_grants COIUMIS. ......ccoiiiiiieiiieieeceiireeeeeere e e eeetreeeeeertareeeeeetrreeeeesanreeeeeetnaeeeens 486
31-20. role_routine_grants COIUMIS .......ccccceeeiiiriieeieiiriee et e eeeire e e eereeeeeeetrreeeeenanreeeeeeanaeeeens 487
31-21. role_table_grants COIUMNS.........cooiiiiiieiiieiee et e et e et e e e eerree e e e trreeeeenanreeeeeearaeeeens 488
31-22. role_usage_grants COIUMNS .........cociviiiieiiiiiie et eecree e eeetre e e eeetre e e e eetreeeeeeetareeeeeeanreeeens 489
31-23. routine_privileges COIUMNS.......cciiiiiiieciie ettt e e e s ae e e ea e e sreeesbeeensseeenens 489
31-24. routines COIUMIS .....oeiieiiuiiiee et eecte e ceere e e ee ettt e e e ee e e e e eeeareeeeeetaaeeeeeestsseeeeenssseeeseetrreeeenn 490
31-25. schemata COIUMIS ......ccooiiuiiieiieiiteee ettt eeere e e ee et e e e eetae e e e eeetareeeeeetaaeeeeeessseeeeenssaeeeseesnreeeenn 494
31-26. sql_features COIUMNS........cccciiiiieeieeeie et e et e et e eete e et e eeseesssaeesssaeeassseessseaessseesnsseesnsses 495
31-27. sql_implementation_info COIUMNS.......ccccceiiiieiiiie ettt e et e e e e 496
31-28. sql_languages COIUIMNS ........cceeeiiiiiiieeeie et eeeite et e et et e et e e eeaeesstaeeensaeesnsaeessseesnnseesnnses 496
31-29. sql_packages COIUMNS. ......ccccuiiiriieeiiee et eeite et e et e eeaee et e esabeesnsaeessaaeeanseeesnseeesnsaeennseesnnnes 497
31-30. 5G1_51Z3inG COIUMMNS ....uiiiiiiiieiiieeciee ettt ettt e et e et e et e et e e sateesstaeeenseeesnseeesnseeeanseesnses 498
31-31. sql_s1izing_profiles COIUMMNS .....cccccciiiiieiieeieeeente e eeteesteeeteesaeesreeseaeeseesbeeseseenseenseenens 498
31-32. table_constraints COIUITIIIS ....ccciitit ittt e et eeeeeeeeeeeeseeeeseeaeaeeeeeaeeens 499
31-33. table_privileges COIUMMNS ...ttt este e erte et esteeaeesbeessaeeseesseessseenseenseesens 499
31-34. £ab1es COIUMIS. ...ooiuiiiiiiiiiiieiteeeet ettt ettt et sttt e b e st e bt e be e st e s aae et e saeeeaseenbeenue 500
31-35. £1iggers COIUIMIS ....cocviiiiiiieeeiiee ettt ettt et e et e e et eeetaeeeetaeeeetteeetaeeeaeeeessseeaseeeenseeeessesesns 501
31-36. usage_privileges COIUMMNS ...ttt e et e et e e et e e ete e e eteeeeabeeeeaseeeans 502
31-37. view_column_usage COIUMMNS......c.ccciiiieiiiiceiieceiee ettt ettt e et eeteeeeteeeeaeeeeateeeeaseeeeaseseens 503
31-38. view_table_usage COIUMMNS ......cccceiiiiieiiiceiie ettt ettt e et e e eaee e e ae e e eveeeeabeeeeaseseens 503
31-39. Views COIUMIS ...co.iiiiriiiieieiteet ettt ettt st b e sttt s bt ettt e bt enbesbe e b e nbeebaenee 504
32-1. Equivalent C Types for Built-In SQL TYPES ...cvereeriiriiriiniinieiineeieniesitetesicetesie et 524
32-2. BAIEE STIATBZIES .e.uveuvevieniiieeterieeiteteettet sttt st sbt et e bt eat et e bt et sbe et e sbesbt et e sbe et e bt sbeenbesbeensenbeebaenee 557
32-3. HASH SITALEEIES . ..veeuvieiieeiieeieeite ettt ettt ettt e st e et e e bt e s bt e sabeesbe e beesabeesseenseesabeenseenseesasesnseenseensns 557
324, RATEE SITAIEZIES ..veeuveenvieririeieenieesieeteesttesteebeesteesttessbeesseesssessseesseesaesasessseenseesssesseenseesssesnsesnseensns 557
32-5. B-tre€ SUPPOTt FUNCHONS. ..ccviitieiiieieiiie sttt ettt sttt et ste et e bt esiteesseenbeesateenseenseenans 558
32-6. Hash Support FUNCHONS ....ccueiiiiiiiiiiiiiiecteeicciteste ettt st ettt sttt enbeenbeenas 559
32-7. R-tre€ SUPPOTt FUNCHONS. ..ccuviiiiiiiiieieiite sttt ettt sttt ettt et e bt esatesbeenbeesateenbeenseenaes 559
32-8. GiST SUPPOTT FUNCHOMNS ....eouviiiiiiiiieieeitesite ettt ettt sttt et sttt et e st e ebeenbeesateenbeenseenaes 559
42-1. SYSEM CALALOZS ...eeuviiiieiieiiiieieeite ettt ettt et e b e st e st e bt e s bt e sabesabee bt esatesabeebeeseesasesnseenseens 1097
42-2. pg_aggregate COIUIMIS. ......cccvviii ittt eeetee e e e eeetae e e e e eeteeeeeeetreeeeeeettaeeeeeeareeeeeessseeeeennnnres 1098
42-3. pg_amM COIUITIIIS .. ..vviieiieiiiiee et e e eeete e e e ettt e e e eeeteeeeeeetaeeeeeeettaeeeeeeasteeeeeeesseeeeeanraseeeessseeeeenasrees 1099
42-4. pg_amop COIUIMINS .....ccuviieeiiiieiieesieeerteeertee e teeestreeeseaeesteeessseeeassseessseaesssesenssesesssesessseeensseessses 1100
42-5. pg_amproC COIUMIS ......cccciiiieieeeiiieeiie et eeete e et e e steesteeessteeesseeessseeessseeasssesessseeessseesssseesnsses 1101
42-6. pg_attrdef COIUMMS ....cccciiiieiie et eieeeetee e te e et e eetteesteeesteeesseeessseaessseeeassaeessseeesseesnsseessses 1101
42-7. pg_attribute COIUMNS.....cioicii et eceeeee ettt e e et e e e te e e s be e e sbeeesnseeesseeessseessseesnneens 1102
42-8. pg_authid COIUMNS .....ceeeciiiieiieeiiieeiee et et e e e e e st e e et e esteeessseeessseeeanseesnseeesseeensseesnsnens 1105
42-9. pg_auth_members COIUMIS ........cceeriiieiiieeiee ettt eiee et eeeteeesteeessbeeeenseeesseeensseesssaesnneens 1106
42-10. pg_autovacuum COIUITILS ........ccoiiiiiiiiieeiiieeeeceiee e e e eeiteeeeeeeteeeeeeetreeeeeeearreeeeeenraeeeeesssreeeeeennnees 1107
42-11. PG_cast COIUIMIS .....cc.uviiiieiiiie ettt e e e et e e e e et te e e e e eetaaeeeeeebteeeeeeesssaeeeeasraeeeeennsseneeeasrnes 1108
42-12. pG_C1ass COIUIMIS .....oiiriiiiiie ettt ee ettt e ettt e e e st e e st eeeteeesaseeessbeesanseesnseeessseeensseesneens 1109
42-13. pg_constraint COIUIMIS .......ociiiiiiiieiieiiee ettt e e ecitee e e e eettte e e e e streeeeeeaaaeeeeeensraseeeensseseeensrens 1112
42-14. pg_conversion COIUIMIS .......ccoiiiiiiieiccieee ettt e e eeitee e e e ettt e e e e estbeeeeeeaareeeeesnsraeeeeennsseeeeeannens 1113
42-15. pg_database COIUMMS...........eiiiiiiiiiee ettt e ettt e e et e e e e eettee e e e eataeeeeesnaraeeeeensseeeeennnnnes 1114
42-16. pg_depend COIUMIS ......cc.oiiiiie ettt e et e e et e e eeteeeeteeeeeaeeeeteeeesteeeeaseseesseeeesseeeesseeeseeas 1116
42-17. pg_description COIUMNS ......ccoiiiiiiieiiie ettt ete et e e te e e et e e eeveeeeaaeeeetveeeesseeeseeas 1118
42-18. pg_index COIUIMIS .....ocieiiiieiieiitiie ettt e ettt e ettt e ettt e et e e eeteeeeteeeeseeeeseeeeaseseeaseeeetseseesseeensseseseeas 1118

XXXIi1



42-19. pg_inherits COIUMMNS.......ccciiiiiieeiiieeciee et et et et e e et e e et e e s beeessbeeeesseeesseeeseseeesseeenseens 1120

42-20. pg_1anguage COIUMMS.......ccuviiiiieiieie et eeeree e e eetae e e eeeeteeeeeeetaeeeeeeetreeeeeeearaeeeeessreeeeennnrnes 1120
42-21. pg_largeobject COIUMIS ........ccoiiviiiiieiieeeeeeereeeeeeeetre e eeeeteeeeeeetreeeeeeerreeeeeeeareeeeeeesreeeeesnnrees 1122
42-22. pg_listener COIUMIMS......ccoiiiiiiiiieie et e ettt e e et eeeeeteeeeeeetbeeeeeeeareeeeeeeareeeeeesareeeeennnrnes 1122
42-23. pg_namespace COIUIMNS. ...........couiiuiiiiiieiiiee ettt e e eeetreeeeeeeteeeeeeeetreeeeeeeaaeeeeeeeareeeeeessseeeeeennnees 1123
42-24. pg_0PClass COIUMMS .......ciociuiieiiieeeiieecieeetee et e e eeeesteeesteeesseeessseaessseeessseeessseeesseeensseessees 1123
42-25. pg_operator COIUMMS. .......ccuiiiiieeeiieeciee et e et te et e e et eesaeeesbeeessseeessseeesseeessseeesseesnssens 1124
42-26. pg_pltemplate COIUMMS ....cccccccvieeiiieeciieeieeeeeeeteestee e et e e st e e s beeessseeessseeesseeensseeesseesnseens 1126
Vi R Yo o e Lol o) 1111113 TSRS 1126
42-28. pg_1eWrite COIUMMNS ...ttt ieiieeiiieeieeectee et e et e e et e e st e e et e eeteeessseeessseeeanseeesseeesseeessaennsnens 1129
42-29. pg_shdepend COIUMIS. ........c.ccoiiiieiiieeciieeiee et ete e ite e et e e e teeesseeessteeeenseeessseeesseesnsseesseens 1130
42-30. pg_statistic COIUMMNS.....cciiiiiiiieeeceeee ettt e ettt e e e e eaare e e e eenraeeeeeeasreeeeeennrnes 1132
42-31. pg_tablespace COIUIMIS ........ccoiiiiiiieeeiiiee et e e e eettee e e e eetee e e e e etreeeeeeeaaaeeeeeenraeeeeennsreaeeeennnes 1134
42-32. pg_trigger COIUIMIMS ....cciiiiiiiieiieiiiie ettt e ettt e e eett e e e e eetteeeeeeetbeeeeeeaaaeeeeeasraseeeennsseneeeasnees 1134
42-33. pG_tYPE COIUIMIS ....ouviiiiiiiieiiie ettt ettt e et e e et e e et e e eaeeeeaeeeeateeeeaaeeeeseeeeesseeeesseeeeseeas 1135
42-34. SYSTEIM VIEWS ...euieniiiiieietiettete et e et e et et e et e e st e eatestesse e te s bt em s et e ebeemtesbeestenbesstenseebeeneebeeseensesaes 1142
42-35. pg_group COIUIMIS .....oiiiiiiiieiie ettt ettt e et e et e e et e e ete e e eaeeeeteeeeaseeeesaeeeeaseeeesseeeesseeeseeas 1142
42-36. pg_indexes COIUMIS .........ccoiiiiiieeeiiie ettt eete et e e et e e et e e eaeeeeteeeetteeeeaeeeetseeeesseeeesseeesenas 1143
42-37. PG_L10CKS COIUITIS ....viiieiiiiieiiieectiie ettt eette e ettt e et e et e e eteeeeteeeeaeeeeaeeeesseeeeaseeeesseseesseeensseeeseeas 1143
42-38. pg_prepared_xacts COIUMIS ......ccoiiiiiiiiiiie ettt e e eete e e e e e e eteeeeaeeeeareeeeareeeeabeeereeas 1146
42-39. PG_1015 COIUIMIIS ....viiiiiiiiieiiieeciie ettt e ettt e et e ettt e et e e et e e eteeeeaaeeesaseeeesseeeessesensseeensseeessesenseeas 1146
42-40. pg_111e5 COIUIMIS ....viiiiiiiiieiiieeciee ettt e ettt ettt e et e e et eeeteeeeteeeeaeeesseeeesseseessesesseeeesseeesseeesnens 1147
42-41. pg_settings COIUMMS....ccooiuiiiiieiieii et eeee e e eett e e e et e e e eetaeeeeeeeaaeeeeeeearaeeeeenareeeeennsnees 1148
42-42. 0g_ShadoW COIUINIIS ......iiiiiiiiiiee ittt e eeee e e eetaeeeeeeeteeeeeeeareeeeeessaseeeeessaraeeeeenareeeeeensrees 1149
42-43, pG_STat s COIUIIS ....cvvviiiiiiiiiiee ittt eeeete et e e eetaeeeeeeeteeeeeeeaaeeeeeessaseeeeensraseeeesareeeeeensrees 1150
42-44, pg_tabD1es COIUINIS ...uvviiiiiiiiiiee ettt eeeee e e eetae e e eeeeaeeeeeeeaaeeeeeensaseeeeesareeeeeesareeeeennsrres 1152
42-45. pG_USET COIUIMIS ...coovvviieieeieiie ettt e ettt e e eeete e e e eetaeeeeeeeteeeeeeeareeeeeenssseeeeesssreeeeeessreeeeennsrees 1153
42-46. PG_vVIieWs COIUIIS .....uvviiiiiiieiiee et e et e e eeeteeeeeeetaeeeeeeeteeeeeeesabeeeeeesssseeeeenssreseeeessreeeeennsrres 1153
50-1. CONLENLS Of PGDATA ..eouviiiiiiieriietenttetenteeitente st et e st eesesteeseessesueessesteessenstebeenaesueensenbesenentesseensenues 1219
50-2. OVErall Page LayOUL......cccueeiuiiiiiiiieeieeiteste ettt ettt sttt et e st e bttt esateeabeebeesaaeenbeenseens 1222
50-3. PageHeaderData LayOuL..........ccoouiiiiiiieiiiiiieeente ettt sttt et sttt et ebe et esanesnbeebeens 1223
50-4. HeapTupleHeaderData LayOuL.........ccocuiiiiiiiiiniieniieeieeieesite ettt sttt sttt 1224
A-1. POStEreSQL EITOT COAES .....cuviiieiiieiiiieieeitesite ettt ettt ettt st sbt e sat e st et e b e sateebeeaee s 1235
B-1. MONth NAIMES. ..ottt sttt e sae s sbe e ne e esnesaee 1243
B-2. Day Of the WEek NNAIMES .....c..cocueriiiiiiiiieieiecieteeeeee ettt s 1243
B-3. Date/Time Field MOGIfIETS. ......ccc.eeriiriiiieiiteiteeteeeette ettt ettt sttt st e 1244
B-4. Time Zone Abbreviations fOr INPUL ..........cociiiiiiiiiiiiieeeeeeteee et 1244
B-5. Australian Time Zone Abbreviations for INput .............ccooiiiiiiiiniiiinceecce e 1248
B-6. Time Zone Names for Setting £ imEZONne .c..cceciririirririenieerineneneereeee ettt 1248
C-1. SQL KEY WOTAS ...ttt ettt ettt ettt et e s bt et e bt e bt e sate e be e bt e satesbeebeens 1261

XXXIV



Preface

This book is the official documentation of PostgreSQL. It is being written by the PostgreSQL develop-
ers and other volunteers in parallel to the development of the PostgreSQL software. It describes all the
functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:

« Part I is an informal introduction for new users.

« Part IT documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

« Part III describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

« Part IV describes the programming interfaces for PostgreSQL client programs.

« Part V contains information for advanced users about the extensibility capabilities of the server. Topics
are, for instance, user-defined data types and functions.

« Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

« Part VII contains assorted information that may be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2', developed at the University of California at Berkeley Computer Science Department. POST-
GRES pioneered many concepts that only became available in some commercial database systems much
later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:

« complex queries

- foreign keys

. triggers

. views

- transactional integrity

« multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

« data types

1. http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/postgres.html

XXXV



Preface

- functions
 operators
 aggregate functions
« index methods

« procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by everyone free
of charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the POST-
GRES package written at the University of California at Berkeley. With over a decade of development
behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in The design of POSTGRES and the definition of the initial data model appeared
in The POSTGRES data model . The design of the rule system at that time was described in The design
of the POSTGRES rules system. The rationale and architecture of the storage manager were detailed in
The design of the POSTGRES storage system .

POSTGRES has undergone several major releases since then. The first “demoware” system became op-
erational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in The
implementation of POSTGRES , was released to a few external users in June 1989. In response to a critique
of the first rule system ( A commentary on the POSTGRES rules system ), the rule system was redesigned
( On Rules, Procedures, Caching and Views in Database Systems ) and Version 2 was released in June
1990 with the new rule system. Version 3 appeared in 1991 and added support for multiple storage man-
agers, an improved query executor, and a rewritten rule system. For the most part, subsequent releases
until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These in-
clude: a financial data analysis system, a jet engine performance monitoring package, an asteroid tracking
database, a medical information database, and several geographic information systems. POSTGRES has
also been used as an educational tool at several universities. Finally, Illustra Information Technologies
(later merged into Informix?, which is now owned by IBM?) picked up the code and commercialized it.
In late 1992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project®.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have been

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html

XXXVI



Preface

devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES project
officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added a SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin
Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

+ The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries were
not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with user-defined
SQL functions. Aggregate functions were re-implemented. Support for the GROUP BY query clause was
also added.

« A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

« A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, provided
new Tcl commands to interface Tcl programs with the Postgres95 server.

+ The large-object interface was overhauled. The inversion large objects were the only mechanism for
storing large objects. (The inversion file system was removed.)

+ The instance-level rule system was removed. Rules were still available as rewrite rules.

« A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed with
the source code

+ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with an
unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent ver-
sions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continues in all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

XXXVID



Preface

3. Conventions

This book uses the following typographical conventions to mark certain portions of text: new terms,
foreign phrases, and other important passages are emphasized in ifalics. Everything that represents in-
put or output of the computer, in particular commands, program code, and screen output, is shown in a
monospaced font (example). Within such passages, italics (example) indicate placeholders; you must
insert an actual value instead of the placeholder. On occasion, parts of program code are emphasized in
bold face (example), if they have been added or changed since the preceding example.

The following conventions are used in the synopsis of a command: brackets ([ and 1) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.) Braces
({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (. . .) mean that the
preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should
not be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL:

FAQs

The FAQ list contains continuously updated answers to frequently asked questions.
READMEs

README files are available for most contributed packages.
Web Site

The PostgreSQL web site” carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists
The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing sup-
port. As you begin to use PostgreSQL, you will rely on others for help, either through the documen-
tation or through the mailing lists. Consider contributing your knowledge back. Read the mailing
lists and answer questions. If you learn something which is not in the documentation, write it up and
contribute it. If you add features to the code, contribute them.

5. http://www.postgresql.org

XXXVIii



Preface

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a newer
version to see if the bug happens there. Or we might decide that the bug cannot be fixed before some
major rewrite we might be planning is done. Or perhaps it is simply too hard and there are more important
things on the agenda. If you need help immediately, consider obtaining a commercial support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that a program does something
different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:

+ A program terminates with a fatal signal or an operating system error message that would point to a
problem in the program. (A counterexample might be a “disk full” message, since you have to fix that
yourself.)

« A program produces the wrong output for any given input.
+ A program refuses to accept valid input (as defined in the documentation).

+ A program accepts invalid input without a notice or error message. But keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

« PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not necessarily
a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do not
speculate what you think went wrong, what “it seemed to do”, or which part of the program has a fault.
If you are not familiar with the implementation you would probably guess wrong and not help us a bit.

XXXIX



Preface

And even if you are, educated explanations are a great supplement to but no substitute for facts. If we are
going to fix the bug we still have to see it happen for ourselves first. Reporting the bare facts is relatively
straightforward (you can probably copy and paste them from the screen) but all too often important details
are left out because someone thought it does not matter or the report would be understood anyway.

The following items should be contained in every bug report:

« The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding CREATE
TABLE and INSERT statements, if the output should depend on the data in the tables. We do not have
the time to reverse-engineer your database schema, and if we are supposed to make up our own data we
would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/.psqglrc start-up file.) An
easy start at this file is to use pg_dump to dump out the table declarations and data needed to set the
scene, then add the problem query. You are encouraged to minimize the size of your example, but this
is not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the offending
queries. We will probably not set up a web server to reproduce your problem. In any case remember
to provide the exact input files; do not guess that the problem happens for “large files” or “midsize
databases”, etc. since this information is too inexact to be of use.

» The output you got. Please do not say that it “didn’t work™ or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash or
otherwise obvious it might not happen on our platform. The easiest thing is to copy the output from the
terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the message.
In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message from the
server log, set the run-time parameter log_error_verbosity to verbose so that all details are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not keep
your server’s log output, this would be a good time to start doing so.

« The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the exact
semantics behind your commands. Especially refrain from merely saying that “This is not what SQL
says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking, nor do we all
know how all the other relational databases out there behave. (If your problem is a program crash, you
can obviously omit this item.)

xl



Preface

+ Any command line options and other start-up options, including any relevant environment variables or
configuration files that you changed from the default. Again, please provide exact information. If you
are using a prepackaged distribution that starts the database server at boot time, you should try to find
out how that is done.

» Anything you did at all differently from the installation instructions.

+ The PostgreSQL version. You can run the command SELECT version (); to find out the version of
the server you are connected to. Most executable programs also support a ——version option; at least
postmaster —-version and psql --version should work. If the function or the options do not
exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged version,
such as RPMs, say so, including any subversion the package may have. If you are talking about a CVS
snapshot, mention that, including its date and time.

If your version is older than 8.1.0 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered in
an older release of PostgreSQL has already been fixed. We can only provide limited support for sites
using older releases of PostgreSQL; if you require more than we can provide, consider acquiring a
commercial support contract.

+ Platform information. This includes the kernel name and version, C library, processor, memory infor-
mation, and so on. In most cases it is sufficient to report the vendor and version, but do not assume
everyone knows what exactly “Debian” contains or that everyone runs on Pentiums. If you have instal-
lation problems then information about the toolchain on your machine (compiler, make, and so on) is
also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article®
that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This will
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still have time
to find and share your work-around. Also, once again, do not waste your time guessing why the bug exists.
We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“PostgreSQL”, sometimes ‘“Postgres” for short. If you are specifically talking about the backend server,
mention that, do not just say “PostgreSQL crashes”. A crash of a single backend server process is quite
different from crash of the parent “postmaster” process; please don’t say “the postmaster crashed” when
you mean a single backend process went down, nor vice versa. Also, client programs such as the interactive
frontend “psql” are completely separate from the backend. Please try to be specific about whether the
problem is on the client or server side.

5.3. Where to report bugs

In general, send bug reports to the bug report mailing list at <pgsql-bugs@postgresgl.org>. You are
requested to use a descriptive subject for your email message, perhaps parts of the error message.

6. http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

xli



Preface

Another method is to fill in the bug report web-form available at the project’s web site’. Entering a bug
report this way causes it to be mailed to the <pgsgl-bugs@postgresqgl . org> mailing list.

If your bug report has security implications and you’d prefer that it not become immediately visible
in public archives, don’t send it to pgsgl-bugs. Security issues can be reported privately to
<security@postgresqgl.org>.

Do not send bug reports to any of the user mailing lists, such as <pgsgl-sqgl@postgresqgl.org> or
<pgsgl-general@postgresql.org>. These mailing lists are for answering user questions, and their
subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to fix them.

Also, please do not send reports to the developers’ mailing list <pgsgl-hackers@postgresgl.org>.
This list is for discussing the development of PostgreSQL, and it would be nice if we could keep the bug
reports separate. We might choose to take up a discussion about your bug report on pgsgl-hackers, if
the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@postgresqgl .org>. Please be specific about what part of the documentation you are
unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsqgl-ports@postgresqgl.org>, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses are
closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it. (You need
not be subscribed to use the bug-report web form, however.) If you would like to send mail but do not
want to receive list traffic, you can subscribe and set your subscription option to nomail. For more
information send mail t0 <majordomo@postgresql.org> with the single word help in the body of the
message.

7. http://www.postgresql.org/

xlii



l. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduc-
tion to PostgreSQL, relational database concepts, and the SQL language to those who are new to any one
of these aspects. We only assume some general knowledge about how to use computers. No particular
Unix or programming experience is required. This part is mainly intended to give you some hands-on
experience with important aspects of the PostgreSQL system. It makes no attempt to be a complete or
thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a more
formal knowledge of the SQL language, or Part IV for information about developing applications for
PostgreSQL. Those who set up and manage their own server should also read Part II1.






Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your experimen-
tation then you can install it yourself. Doing so is not hard and it can be a good exercise. PostgreSQL can
be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 14 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set things up in the default way, you may have some more work to do. For
example, if the database server machine is a remote machine, you will need to set the PGHOST environment
variable to the name of the database server machine. The environment variable PGPORT may also have to
be set. The bottom line is this: if you try to start an application program and it complains that it cannot
connect to the database, you should consult your site administrator or, if that is you, the documentation
to make sure that your environment is properly set up. If you did not understand the preceding paragraph
then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding how
the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the follow-
ing cooperating processes (programs):

« A server process, which manages the database files, accepts connections to the database from client
applications, and performs actions on the database on behalf of the clients. The database server program
is called postmaster.

« The user’s client (frontend) application that wants to perform database operations. Client applications
can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a web server
that accesses the database to display web pages, or a specialized database maintenance tool. Some client
applications are supplied with the PostgreSQL distribution; most are developed by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. You should keep this in mind, because the files that
can be accessed on a client machine might not be accessible (or might only be accessible using a different
file name) on the database server machine.



Chapter 1. Getting Started

The PostgreSQL server can handle multiple concurrent connections from clients. For that purpose it starts
(“forks”) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original postmaster process. Thus, the postmaster is always
running, waiting for client connections, whereas client and associated server processes come and go. (All
of this is of course invisible to the user. We only mention it here for completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project or
for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In that case you can omit this step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:
$ createdb mydb

This should produce as response:
CREATE DATABASE

If so, this step was successful and you can skip over the remainder of this section.

If you see a message similar to
createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or the search path was not set
correctly. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb
The path at your site might be different. Contact your site administrator or check back in the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server:
No such file or directory

Is the server running locally and accepting

connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again, check
the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: user "joe" does not
exist



Chapter 1. Getting Started

where your own login name is mentioned. This will happen if the administrator has not created a Post-
greSQL user account for you. (PostgreSQL user accounts are distinct from operating system user ac-
counts.) If you are the administrator, see Chapter 18 for help creating accounts. You will need to become
the operating system user under which PostgreSQL was installed (usually postgres) to create the first
user account. It could also be that you were assigned a PostgreSQL user name that is different from your
operating system user name; in that case you need to use the -U switch or set the PGUSER environment
variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will see
the following:

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases for
you then the site administrator needs to grant you permission to create databases. Consult your site ad-
ministrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes of
this tutorial under the user account that you started the server as. '

You can also create databases with other names. PostgreSQL allows you to create any number of databases
at a given site. Database names must have an alphabetic first character and are limited to 63 characters in
length. A convenient choice is to create a database with the same name as your current user name. Many
tools assume that database name as the default, so it can save you some typing. To create that database,

simply type

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone, so
this should only be done with a great deal of forethought.

More about createdb and dropdb may be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

» Running the PostgreSQL interactive terminal program, called psgl, which allows you to interactively
enter, edit, and execute SQL commands.

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. If you
connect to a database, you can choose what PostgreSQL user name to connect as; if you don’t, it will default to the same name
as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the same name
as the operating system user that started the server, and it also happens that that user always has permission to create databases.
Instead of logging in as that user you can also specify the —U option everywhere to select a PostgreSQL user name to connect as.



Chapter 1. Getting Started

« Using an existing graphical frontend tool like PgAccess or an office suite with ODBC support to create
and manipulate a database. These possibilities are not covered in this tutorial.

« Writing a custom application, using one of the several available language bindings. These possibilities
are discussed further in Part IV.

You probably want to start up psql, to try out the examples in this tutorial. It can be activated for the
mydb database by typing the command:

$ psql mydb

If you leave off the database name then it will default to your user account name. You already discovered
this scheme in the previous section.

In psql, you will be greeted with the following message:

Welcome to psgl 8.1.0, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help with psgl commands
\g or terminate with semicolon to execute query
\g to quit

mydb=>
The last line could also be
mydb=+#

That would mean you are a database superuser, which is most likely the case if you installed PostgreSQL
yourself. Being a superuser means that you are not subject to access controls. For the purpose of this
tutorial this is not of importance.

If you encounter problems starting psgl then go back to the previous section. The diagnostics of
createdb and psqgl are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psq1 is listening to you and that you
can type SQL queries into a work space maintained by psgl. Try out these commands:

mydb=> SELECT version();

version

PostgreSQL 8.1.0 on i586-pc-linux-gnu, compiled by GCC 2.96
(1 row)

mydb=> SELECT current_date;
date

2002-08-31
(1 row)

mydb=> SELECT 2 + 2;
?column?



Chapter 1. Getting Started

(1 row)

The psgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. Some of these commands were listed in the welcome message. For example,
you can get help on the syntax of various PostgreSQL SQL commands by typing:

mydb=> \h

To get out of psql, type
mydb=> \q

and psgl will quit and return you to your command shell. (For more internal commands, type \? at the
psqgl prompt.) The full capabilities of psgl are documented in psql. If PostgreSQL is installed correctly
you can also type man psgl at the operating system shell prompt to see the documentation. In this tutorial
we will not use these features explicitly, but you can use them yourself when you see fit.



Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books have
been written on SQL, including Understanding the New SQL and A Guide to the SQL Standard. You
should be aware that some PostgreSQL language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described in the
previous chapter, and have started psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/. To use those files, first change to that directory and run make:

$ ed ..../src/tutorial
$ make

This creates the scripts and compiles the C files containing user-defined functions and types. (You must
use GNU make for this — it may be named something different on your system, often gmake.) Then, to
start the tutorial, do the following:

$ ed ..../src/tutorial
$ psql -s mydb

mydb=> \i basics.sql

The \i command reads in commands from the specified file. The -s option puts you in single step mode
which pauses before sending each statement to the server. The commands used in this section are in the
file basics.sql.

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for man-
aging data stored in relations. Relation is essentially a mathematical term for fable. The notion of storing
data in tables is so commonplace today that it might seem inherently obvious, but there are a number of
other ways of organizing databases. Files and directories on Unix-like operating systems form an example
of a hierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of a specific data type. Whereas columns have a fixed order in each row, it is important
to remember that SQL does not guarantee the order of the rows within the table in any way (although they
can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a database cluster.



Chapter 2. The SQL Language

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_lo int, -— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)i

You can enter this into psgl with the line breaks. psgl will recognize that the command is not terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) may be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“--") introduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in length.
int is the normal integer type. real is a type for storing single precision floating-point numbers. date
should be self-explanatory. (Yes, the column of type date is also named date. This may be convenient
or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision, char (N),
varchar (N), date, time, timestamp, and interval, as well as other types of general utility and a
rich set of geometric types. PostgreSQL can be customized with an arbitrary number of user-defined data
types. Consequently, type names are not syntactical key words, except where required to support special
cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)

The point type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, 71994-11-27");



Chapter 2. The SQL Language

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes (), as in the example. The date type is actually quite flexible
in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES (’San Francisco’, ' (-194.0, 53.0)7);

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES (’San Francisco’, 43, 57, 0.0, "1994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the precipi-
tation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES (’1994-11-29’, ’"Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter all the commands shown above so you have some data to work with in the following sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually faster
because the copy command is optimized for this application while allowing less flexibility than INSERT.
An example would be:

COPY weather FROM ’ /home/user/weather.txt’;

where the file name for the source file must be available to the backend server machine, not the client,
since the backend server reads the file directly. You can read more about the CopY command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the part
that lists the tables from which to retrieve the data), and an optional qualification (the part that specifies
any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;
Here = is a shorthand for “all columns”. ! So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

1. While seLECT ~ is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column
to the table would change the results.



Chapter 2. The SQL Language

city | temp_lo | temp_hi | prcp | date
777777777777777 F——————
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0O | 1994-11-29
Hayward | 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

city | temp_avg | date
_______________ o
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT % FROM weather
WHERE city = ’San Francisco’ AND prcp > 0.0;

Result:
city | temp_lo | temp_hi | prcp | date
——————————————— B B s st
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT » FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
——————————————— T S ettt
Hayward | 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0O | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn’t fully specified, and so you might get the San Francisco rows in either
order. But you’d always get the results shown above if you do



Chapter 2. The SQL Language

SELECT % FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward
San Francisco
(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT and
ORDER BY together: 2

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at once, or
access the same table in such a way that multiple rows of the table are being processed at the same time.
A query that accesses multiple rows of the same or different tables at one time is called a join query. As
an example, say you wish to list all the weather records together with the location of the associated city.
To do that, we need to compare the city column of each row of the weather table with the name column
of all rows in the cities table, and select the pairs of rows where these values match.

Note: This is only a conceptual model. The join is usually performed in a more efficient manner than
actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:
SELECT *

FROM weather, cities
WHERE city = name;

city | temp_lo | temp_hi | prcp | date | name | location
777777777777777 -t
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0O | 1994-11-29 | San Francisco | (-194,53)

(2 rows)

2. Insome database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders the
rows and so ORDER BY is redundant. But this is not required by the SQL standard, and current PostgreSQL doesn’t guarantee that
DISTINCT causes the rows to be ordered.

10



Chapter 2. The SQL Language

Observe two things about the result set:

« There is no result row for the city of Hayward. This is because there is no matching entry in the cities
table for Hayward, so the join ignores the unmatched rows in the weather table. We will see shortly how
this can be fixed.

+ There are two columns containing the city name. This is correct because the lists of columns of the
weather and the cities table are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using *:

SELECT city, temp_lo, temp_hi, prcp, date, location

FROM weather, cities
WHERE city = name;

Exercise: Attempt to find out the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found out which table they belong to,
but it is good style to fully qualify column names in join queries:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT =«
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is to
scan the weather table and for each row to find the matching cities row. If no matching row is found
we want some “empty values” to be substituted for the cities table’s columns. This kind of query is
called an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT «*
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— s S it et
Hayward | 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0O | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will have
each of its rows in the output at least once, whereas the table on the right will only have those rows output

11



Chapter 2. The SQL Language

that match some row of the left table. When outputting a left-table row for which there is no right-table
match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to find
all the weather records that are in the temperature range of other weather records. So we need to compare
the temp_1lo and temp_hi columns of each weather row to the temp_1lo and temp_hi columns of all
other weather rows. We can do this with the following query:

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather W1, weather W2
WHERE Wl.temp_lo < W2.temp_lo
AND Wl.temp_hi > W2.temp_hi;

city | low | high | city | low | high
——————————————— Rt et S
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as W1 and w2 to be able to distinguish the left and right side of
the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT =
FROM weather w, cities c
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to compute
the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with

SELECT max (temp_lo) FROM weather;

If we wanted to know what city (or cities) that reading occurred in, we might try

SELECT city FROM weather WHERE temp_lo = max (temp_lo); WRONG

12



Chapter 2. The SQL Language

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines the rows that will go into the aggregation stage; so it has to
be evaluated before aggregate functions are computed.) However, as is often the case the query can be
restated to accomplish the intended result, here by using a subquery:

SELECT city FROM weather
WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

San Francisco
(1 row)

This is OK because the subquery is an independent computation that computes its own aggregate sepa-
rately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with

SELECT city, max(temp_lo)
FROM weather
GROUP BY city;

city | max
_______________ b
Hayward | 37

San Francisco | 46

(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

city | max
_________ b
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_10 values below 40. Finally, if we
only care about cities whose names begin with “S”, we might do

SELECT city, max(temp_lo)
FROM weather
WHERE city LIKE ’S%'@®
GROUP BY city
HAVING max (temp_lo) < 40;

© The LIKE operator does pattern matching and is explained in Section 9.7.

13



Chapter 2. The SQL Language

It is important to understand the interaction between aggregates and SQL’s WHERE and HAVING clauses.
The fundamental difference between WHERE and HAVING is this: WHERE selects input rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVING selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVING clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVING clause that doesn’t use aggregates, but it’s seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature readings
are all off by 2 degrees as of November 28. You may update the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > 71994-11-28';

Look at the new state of the data:

SELECT = FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— e e St e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = ’'Hayward’;

All weather records belonging to Hayward are removed.

SELECT % FROM weather;

14



Chapter 2. The SQL Language

city | temp_lo | temp_hi | prcp | date
777777777777777 F——————
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 rows)

One should be wary of statements of the form
DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

15



Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in Post-
greSQL. We will now discuss some more advanced features of SQL that simplify management and prevent
loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it will
be of advantage if you have read that chapter. Some examples from this chapter can also be found in
advanced. sql in the tutorial directory. This file also contains some example data to load, which is not
repeated here. (Refer to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city location
is of particular interest to your application, but you do not want to type the query each time you need it.
You can create a view over the query, which gives a name to the query that you can refer to like an ordinary
table.

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT » FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsulate
the details of the structure of your tables, which may change as your application evolves, behind consistent
interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want to
make sure that no one can insert rows in the weather table that do not have a matching entry in the
cities table. This is called maintaining the referential integrity of your data. In simplistic database
systems this would be implemented (if at all) by first looking at the cities table to check if a matching
record exists, and then inserting or rejecting the new weather records. This approach has a number of
problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

16



Chapter 3. Advanced Features

CREATE TABLE cities (
city varchar (80) primary key,
location point

)

CREATE TABLE weather (
city varchar (80) references cities(city),
temp_1lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:
INSERT INTO weather VALUES (’Berkeley’, 45, 53, 0.0, ’1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint "weather_ci
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of foreign
keys will definitely improve the quality of your database applications, so you are strongly encouraged to
learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is that
it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between the steps
are not visible to other concurrent transactions, and if some failure occurs that prevents the transaction
from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice’s
account to Bob’s account. Simplifying outrageously, the SQL commands for this might look like

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’'Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Bob’);

The details of these commands are not important here; the important point is that there are several separate
updates involved to accomplish this rather simple operation. Our bank’s officers will want to be assured
that either all these updates happen, or none of them happen. It would certainly not do for a system failure

17



Chapter 3. Advanced Features

to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long remain a happy
customer if she was debited without Bob being credited. We need a guarantee that if something goes
wrong partway through the operation, none of the steps executed so far will take effect. Grouping the
updates into a transaction gives us this guarantee. A transaction is said to be atomic: from the point of
view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database system,
it has indeed been permanently recorded and won’t be lost even if a crash ensues shortly thereafter. For
example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit to
his account will disappear in a crash just after he walks out the bank door. A transactional database
guarantees that all the updates made by a transaction are logged in permanent storage (i.e., on disk) before
the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if one transaction is busy totalling all the branch balances, it would
not do for it to include the debit from Alice’s branch but not the credit to Bob’s branch, nor vice versa.
So transactions must be all-or-nothing not only in terms of their permanent effect on the database, but
also in terms of their visibility as they happen. The updates made so far by an open transaction are in-
visible to other transactions until the transaction completes, whereupon all the updates become visible
simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with BEGIN
and COMMIT commands. So our banking transaction would actually look like

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’'Alice’;

-— etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not is-
sue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful) COMMIT
wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes called a trans-
action block.

Note: Some client libraries issue BEGIN and comM1T commands automatically, so that you may get the
effect of transaction blocks without asking. Check the documentation for the interface you are using.

It’s possible to control the statements in a transaction in a more granular fashion through the use of save-
points. Savepoints allow you to selectively discard parts of the transaction, while committing the rest.
After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with ROLLBACK
TO. All the transaction’s database changes between defining the savepoint and rolling back to it are dis-
carded, but changes earlier than the savepoint are kept.

18



Chapter 3. Advanced Features

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won’t need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions. When
and if you commit the transaction block, the committed actions become visible as a unit to other sessions,
while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice’s account, and credit Bob’s ac-
count, only to find later that we should have credited Wally’s account. We could do it using savepoints
like this:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’"Alice’;

SAVEPOINT my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;

—— oops ... forget that and use Wally’s account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Wally’;

COMMIT;

This example is, of course, oversimplified, but there’s a lot of control to be had over a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transaction
block that was put in aborted state by the system due to an error, short of rolling it back completely and
starting again.

3.5. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let’s create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list all cities. If you’re really clever you might
invent some scheme like this:

CREATE TABLE capitals (
name text,
population real,
altitude int, —-— (in ft)
state char (2)
)i

CREATE TABLE non_capitals (
name text,
population real,
altitude int -— (in ft)

19



Chapter 3. Advanced Features
)i

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (

name text,
population real,
altitude int -— (in ft)

)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and altitude) from its
parent, cities. The type of the column name is text, a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL, a table
can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located at
an altitude over 500 ft.:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
,,,,,,,,,,, b
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude of 500 ft. or higher:

SELECT name, altitude
FROM ONLY cities

WHERE altitude > 500;

name | altitude

20



Chapter 3. Advanced Features

Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here the oNLY before cities indicates that the query should be run over only the cities table, and not
tables below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note: Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.8 for more detail.

3.6. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site' for links to more
resources.

1. http://www.postgresql.org

21



Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database, and
how to query it. The middle part lists the available data types and functions for use in SQL commands.
The rest treats several aspects that are important for tuning a database for optimal performance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full un-
derstanding of the topics without having to refer forward too many times. The chapters are intended to be
self-contained, so that advanced users can read the chapters individually as they choose. The information
in this part is presented in a narrative fashion in topical units. Readers looking for a complete description
of a particular command should look into Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.






Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following chapters
which will go into detail about how the SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because there are
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens, ter-
TRL

minated by a semicolon (*;”). The end of the input stream also terminates a command. Which tokens are
valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

For example, the following is (syntactically) valid SQL input:

SELECT = FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’'hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one command
can be on a line, and commands can usefully be split across lines).

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
INSERT also requires a VALUES in order to be complete. The precise syntax rules for each command are
described in Part VI.

4.1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that is,
words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of
identifiers. They identify names of tables, columns, or other database objects, depending on the command
they are used in. Therefore they are sometimes simply called “names”. Key words and identifiers have
the same lexical structure, meaning that one cannot know whether a token is an identifier or a key word
without knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers according

24



Chapter 4. SQL Syntax

to the letter of the SQL standard, so their use may render applications less portable. The SQL standard
will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 characters of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
length is 63. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant in

src/include/postgres_ext.h

Identifier and key word names are case insensitive. Therefore
UPDATE MY_TABLE SET A = 5;

can equivalently be written as

uPDaTE my_TabLE SeT a 5;

A convention often used is to write key words in upper case and names in lower case, e.g.,

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an identifier,
never a key word. So "select" could be used to refer to a column or table named “select”, whereas an
unquoted select would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character other than a double quote itself. (To include a double quote,
write two double quotes.) This allows constructing table or column names that would otherwise not be
possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers FOO, foo, and "foo" are considered the same by PostgreSQL, but
"Foo" and "FoO" are different from these three and each other. (The folding of unquoted names to lower
case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the standard. If
you want to write portable applications you are advised to always quote a particular name or never quote
it.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL.: strings, bit strings, and numbers. Con-
stants can also be specified with explicit types, which can enable more accurate representation and more
efficient handling by the system. These alternatives are discussed in the following subsections.

25



Chapter 4. SQL Syntax

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (” ), for example
"This is a string’. The standard-compliant way of writing a single-quote character within a string
constant is to write two adjacent single quotes, e.g. ' Dianne”s horse’. PostgreSQL also allows single
quotes to be escaped with a backslash (\’). However, future versions of PostgreSQL will not allow this,
so applications using backslashes should convert to the standard-compliant method outlined above.

Another PostgreSQL extension is that C-style backslash escapes are available: \b is a backspace, \ £ is a
form feed, \n is a newline, \r is a carriage return, \t is a tab. Also supported is \digits, where digits
represents an octal byte value, and \xhexdigits, where hexdigits represents a hexadecimal byte value.
(It is your responsibility that the byte sequences you create are valid characters in the server character set
encoding.) Any other character following a backslash is taken literally. Thus, to include a backslash in a
string constant, write two backslashes.

Note: While ordinary strings now support C-style backslash escapes, future versions will gener-
ate warnings for such usage and eventually treat backslashes as literal characters to be standard-
conforming. The proper way to specify escape processing is to use the escape string syntax to indi-
cate that escape processing is desired. Escape string syntax is specified by writing the letter & (upper
or lower case) just before the string, e.g. £ \041’. This method will work in all future versions of
PostgreSQL.

The character with the code zero cannot be in a string constant.

Two string constants that are only separated by whitespace with at least one newline are concatenated and
effectively treated as if the string had been written in one constant. For example:

SELECT '’ foo’
"bar’;

is equivalent to
SELECT ' foobar’;
but
SELECT ' foo’ "bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to un-
derstand when the desired string contains many single quotes or backslashes, since each of those must
be doubled. To allow more readable queries in such situations, PostgreSQL provides another way, called
“dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($),
an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that

26



Chapter 4. SQL Syntax

makes up the string content, a dollar sign, the same tag that began this dollar quote, and a dollar sign. For
example, here are two different ways to specify the string “Dianne’s horse” using dollar quoting:

$$Dianne’s horse$s$
$SomeTag$Dianne’s horse$SomeTags$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always written
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This is
most commonly used in writing function definitions. For example:

S$function$
BEGIN
RETURN ($1 ~ $g$[\t\r\n\v\\]1$qg$);
END;
$function$

Here, the sequence $gs$[\t\r\n\v\\]1$qg$ represents a dollar-quoted literal string [\t\r\n\v\\1,
which will be recognized when the function body is executed by PostgreSQL. But since the sequence
does not match the outer dollar quoting delimiter $functions, it is just some more characters within the
constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain a dollar sign. Tags are case sensitive, so $tag$String content$tag$ is correct, but
$TAGSString content$tag$ is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write complicated
string literals than the standard-compliant single quote syntax. It is particularly useful when representing
string constants inside other constants, as is often needed in procedural function definitions. With single-
quote syntax, each backslash in the above example would have to be written as four backslashes, which
would be reduced to two backslashes in parsing the original string constant, and then to one when the
inner string constant is re-parsed during function execution.

4.1.2.3. Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B’ 1001’ . The only characters allowed within bit-
string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper or
lower case), e.g., X’ 1FF’. This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string constants.
Dollar quoting cannot be used in a bit-string constant.

27



Chapter 4. SQL Syntax

4.1.2.4. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits. [digits] [e[+-]digits]
[digits] .digits[e[+—-]1digits]
digitse[+t—]digits

where digits is one or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.
There may not be any spaces or other characters embedded in the constant. Note that any leading plus or
minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be type
integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint if its value
fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that contain decimal
points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution algo-
rithms. In most cases the constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force a numeric value to be treated as type real (float4) by writing

REAL '1.23" —-- string style
1.23::REAL —— PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.5. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type ' string’
"string’ ::type
CAST ( "string’ AS type )

The string constant’s text is passed to the input conversion routine for the type called type. The result is
a constant of the indicated type. The explicit type cast may be omitted if there is no ambiguity as to the
type the constant must be (for example, when it is assigned directly to a table column), in which case it is
automatically coerced.

28



Chapter 4. SQL Syntax

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:
typename ( ' string’ )

but not all type names may be used in this way; see Section 4.2.8 for details.

The ::, CAST (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.8. But the form type ’string’ can only be used to
specify the type of a literal constant. Another restriction on type ’string’ is that it does not work for
array types; use : : or CAST () to specify the type of an array constant.

The casT () syntax conforms to SQL. The type ’string’ syntax is a generalization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax
with : : is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following
list:

+-F/<>=~1@# D &I ?

There are a few restrictions on operator names, however:

+ —-and /x cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

+ A multiple-character operator name cannot end in + or —, unless the name also contains at least one of
these characters:

~l@#DP &7

For example, @- is an allowed operator name, but »- is not. This restriction allows PostgreSQL to parse
SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent opera-
tors with spaces to avoid ambiguity. For example, if you have defined a left unary operator named @, you
cannot write X+@Y; you must write X+ @Y to ensure that PostgreSQL reads it as two operator names not
one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an operator.
Details on the usage can be found at the location where the respective syntax element is described. This

29



Chapter 4. SQL Syntax

section only exists to advise the existence and summarize the purposes of these characters.

+ A dollar sign ($) followed by digits is used to represent a positional parameter in the body of a function
definition or a prepared statement. In other contexts the dollar sign may be part of an identifier or a
dollar-quoted string constant.

+ Parentheses ( () ) have their usual meaning to group expressions and enforce precedence. In some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

« Brackets ([1) are used to select the elements of an array. See Section 8.10 for more information on
arrays.

« Commas (, ) are used in some syntactical constructs to separate the elements of a list.

+ The semicolon (; ) terminates an SQL command. It cannot appear anywhere within a command, except
within a string constant or quoted identifier.

« The colon (:) is used to select “slices” from arrays. (See Section 8.10.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

« The asterisk () is used in some contexts to denote all the fields of a table row or composite value. It
also has a special meaning when used as the argument of the COUNT aggregate function.

+ The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments

A comment is an arbitrary sequence of characters beginning with double dashes and extending to the end
of the line, e.g.:

-— This is a standard SQL comment

Alternatively, C-style block comments can be used:

/+ multiline comment
x with nesting: /% nested block comment =/
*/

where the comment begins with /» and extends to the matching occurrence of = /. These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that may contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced by
whitespace.

4.1.6. Lexical Precedence

Table 4-1 shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-

30



Chapter 4. SQL Syntax

wired into the parser. This may lead to non-intuitive behavior; for example the Boolean operators < and
> have a different precedence than the Boolean operators <= and >=. Also, you will sometimes need to
add parentheses when using combinations of binary and unary operators. For instance

SELECT 5 ! - 6;
will be parsed as
SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write

SELECT (5 !) - 6;

This is the price one pays for extensibility.

Table 4-1. Operator Precedence (decreasing)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast

[] left array element selection

- right unary minus

8 left exponentiation

/% left multiplication, division, modulo

+ - left addition, subtraction

IS IS TRUE, IS FALSE, IS
UNKNOWN, IS NULL

ISNULL test for null

NOTNULL test for not null

(any other) left all other native and user-defined
operators

IN set membership

BETWEEN range containment

OVERLAPS time interval overlap

LIKE ILIKE SIMILAR string pattern matching

<> less than, greater than

= right equality, assignment

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names as
the built-in operators mentioned above. For example, if you define a “+” operator for some custom data
type it will have the same precedence as the built-in “+” operator, no matter what yours does.

31



Chapter 4. SQL Syntax

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in
SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4-1 for “any other” oper-
ator. This is true no matter which specific operator name appears inside OPERATOR () .

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table ex-
pression (which is a table). Value expressions are therefore also called scalar expressions (or even simply
expressions). The expression syntax allows the calculation of values from primitive parts using arithmetic,
logical, set, and other operations.

A value expression is one of the following:

+ A constant or literal value.

« A column reference.

+ A positional parameter reference, in the body of a function definition or prepared statement.
» A subscripted expression.
A field selection expression.
« An operator invocation.

+ A function call.

+ An aggregate expression.

« A type cast.

+ A scalar subquery.

« An array constructor.

« A row constructor.

« Another value expression in parentheses, useful to group subexpressions and override precedence.

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and are
explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining op-
tions.

32



Chapter 4. SQL Syntax

4.2.1. Column References

A column can be referenced in the form

correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table
defined by means of a FROM clause, or one of the key words NEW or OLD. (NEW and OLD can only appear in
rewrite rules, while other correlation names can be used in any SQL statement.) The correlation name and
separating dot may be omitted if the column name is unique across all the tables being used in the current
query. (See also Chapter 7.)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL statement.
Parameters are used in SQL function definitions and in prepared queries. Some client libraries also support
specifying data values separately from the SQL command string, in which case parameters are used to
refer to the out-of-line data values. The form of a parameter reference is:

Snumber

For example, consider the definition of a function, dept, as

CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the $1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be extracted
by writing

expression|[subscript]
or multiple adjacent elements (an “array slice”) can be extracted by writing
expression|lower_subscript:upper_subscript]

(Here, the brackets [ ] are meant to appear literally.) Each subscript is itself an expression, which
must yield an integer value.

In general the array expression must be parenthesized, but the parentheses may be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example,

33



Chapter 4. SQL Syntax

mytable.arraycolumn[4]
mytable.two_d_column([17] [34]
$1[10:42]
(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.10 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression. fieldname

In general the row expression must be parenthesized, but the parentheses may be omitted when the
expression to be selected from is just a table reference or positional parameter. For example,

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.)

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND, OR,
and NOT, or is a qualified operator name in the form

OPERATOR (schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function ([expression [, expression ... 1] )

34



Chapter 4. SQL Syntax

For example, the following computes the square root of 2:

sqrt (2)

The list of built-in functions is in Chapter 9. Other functions may be added by the user.

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected by a
query. An aggregate function reduces multiple inputs to a single output value, such as the sum or average
of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression)

aggregate_name (DISTINCT expression)

(
aggregate_name (ALL expression)
(

(*)

aggregate_name

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name), and
expression is any value expression that does not itself contain an aggregate expression.

The first form of aggregate expression invokes the aggregate across all input rows for which the given
expression yields a non-null value. (Actually, it is up to the aggregate function whether to ignore null
values or not — but all the standard ones do.) The second form is the same as the first, since ALL is the
default. The third form invokes the aggregate for all distinct non-null values of the expression found in
the input rows. The last form invokes the aggregate once for each input row regardless of null or non-null
values; since no particular input value is specified, it is generally only useful for the count () aggregate
function.

For example, count (x) yields the total number of input rows; count (£1) yields the number of input
rows in which £1 is non-null; count (distinct £1) yields the number of distinct non-null values of
f1.

The predefined aggregate functions are described in Section 9.15. Other aggregate functions may be added
by the user.

An aggregate expression may only appear in the result list or HAVING clause of a SELECT command. It is
forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the results
of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.9 and Section 9.16), the aggregate
is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s argument
contains only outer-level variables: the aggregate then belongs to the nearest such outer level, and is
evaluated over the rows of that query. The aggregate expression as a whole is then an outer reference for
the subquery it appears in, and acts as a constant over any one evaluation of that subquery. The restriction
about appearing only in the result list or HAVING clause applies with respect to the query level that the
aggregate belongs to.

35



Chapter 4. SQL Syntax

4.2.8. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST ( expression AS type )

expression: :type

The caAsT syntax conforms to SQL; the syntax with : : is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion. The
cast will succeed only if a suitable type conversion operation has been defined. Notice that this is subtly
different from the use of casts with constants, as shown in Section 4.1.2.5. A cast applied to an unadorned
string literal represents the initial assignment of a type to a literal constant value, and so it will succeed
for any type (if the contents of the string literal are acceptable input syntax for the data type).

An explicit type cast may usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply
a type cast in such cases. However, automatic casting is only done for casts that are marked “OK to
apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This
restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename ( expression )

However, this only works for types whose names are also valid as function names. For example, double
precision can’t be used this way, but the equivalent £1oat8 can. Also, the names interval, time,
and t imestamp can only be used in this fashion if they are double-quoted, because of syntactic conflicts.
Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably be avoided
in new applications. (The function-like syntax is in fact just a function call. When one of the two standard
cast syntaxes is used to do a run-time conversion, it will internally invoke a registered function to perform
the conversion. By convention, these conversion functions have the same name as their output type, and
thus the “function-like syntax” is nothing more than a direct invocation of the underlying conversion
function. Obviously, this is not something that a portable application should rely on.)

4.2.9. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that returns
more than one row or more than one column as a scalar subquery. (But if, during a particular execution,
the subquery returns no rows, there is no error; the scalar result is taken to be null.) The subquery can
refer to variables from the surrounding query, which will act as constants during any one evaluation of the
subquery. See also Section 9.16 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max (pop) FROM cities WHERE cities.state = states.name)
FROM states;

36



Chapter 4. SQL Syntax

4.2.10. Array Constructors

An array constructor is an expression that builds an array value from values for its member elements. A
simple array constructor consists of the key word ARRAY, a left square bracket [, one or more expressions
(separated by commas) for the array element values, and finally a right square bracket 1. For example,

SELECT ARRAY[1,2,3+4];

The array element type is the common type of the member expressions, determined using the same rules
as for UNTON or CASE constructs (see Section 10.5).

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the
key word ARRAY may be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]1];

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2]1,1[3,411;

{({1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(fl int[], £2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,811);

SELECT ARRAY[fl, f2, ’"{{9,10},{11,12}}"::int[]] FROM arr;
array

{({{1,2},(3,4}},{{(5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE ’bytea%’);
?column?

37



Chapter 4. SQL Syntax

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31}
(1 row)

The subquery must return a single column. The resulting one-dimensional array will have an element for
each row in the subquery result, with an element type matching that of the subquery’s output column.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.10.

4.2.11. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) from values
for its member fields. A row constructor consists of the key word Row, a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally a right parenthesis. For example,

SELECT ROW(1,2.5,"this is a test’);

The key word rROW is optional when there is more than one expression in the list.

By default, the value created by a ROwW expression is of an anonymous record type. If necessary, it can be
cast to a named composite type — either the row type of a table, or a composite type created with CREATE
TYPE AS. An explicit cast may be needed to avoid ambiguity. For example:

CREATE TABLE mytable (fl int, f2 float, £3 text);

CREATE FUNCTION getfl (mytable) RETURNS int AS ’'SELECT $1.fl1’ LANGUAGE SQL;

—— No cast needed since only one getfl() exists
SELECT getfl (ROW(1l,2.5,”this is a test’));
getfl

1
(1 row)

CREATE TYPE myrowtype AS (f1 int, £f2 text, £3 numeric);

CREATE FUNCTION getfl (myrowtype) RETURNS int AS ’'SELECT $1.f1’ LANGUAGE SQL;

-— Now we need a cast to indicate which function to call:
SELECT getfl (ROW(1,2.5,"this is a test’));
ERROR: function getfl (record) is not unique

SELECT getfl (ROW(1,2.5,"’this is a test’)::mytable);
getfl

SELECT getfl (CAST(ROW(11l,’this is a test’,2.5) AS myrowtype));
getfl

38



Chapter 4. SQL Syntax

(1 row)

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
values or test a row with IS NULL or IS NOT NULL, for example

SELECT ROW(1,2.5,"this is a test’) = ROW(1l, 3, ’'not the same’);
SELECT ROW(a, b, c) IS NOT NULL FROM table;

For more detail see Section 9.17. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.16.

4.2.12. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or function
are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote

SELECT true OR somefunc();

then somefunc () would (probably) not be called at all. The same would be the case if one wrote
SELECT somefunc () OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found in

some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses may be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.13) may be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x <> 0 AND y/x > 1.5;
But this is safe:
SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would doubtless be best to sidestep the problem by writing y >
1.5xx instead.)

39



Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the tables.
Subsequently, we discuss how tables can be organized into schemas, and how privileges can be assigned
to tables. Finally, we will briefly look at other features that affect the data storage, such as inheritance,
views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The number
and order of the columns is fixed, and each column has a name. The number of rows is variable -- it
reflects how much data is stored at a given moment. SQL does not make any guarantees about the order of
the rows in a table. When a table is read, the rows will appear in random order, unless sorting is explicitly
requested. This is covered in Chapter 7. Furthermore, SQL does not assign unique identifiers to rows, so it
is possible to have several completely identical rows in a table. This is a consequence of the mathematical
model that underlies SQL but is usually not desirable. Later in this chapter we will see how to deal with
this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to a
column and assigns semantics to the data stored in the column so that it can be used for computations. For
instance, a column declared to be of a numerical type will not accept arbitrary text strings, and the data
stored in such a column can be used for mathematical computations. By contrast, a column declared to be
of a character string type will accept almost any kind of data but it does not lend itself to mathematical
calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed ex-
planation to Chapter 8. Some of the frequently used data types are integer for whole numbers, numeric
for possibly fractional numbers, text for character strings, date for dates, t ime for time-of-day values,
and timestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)i

This creates a table named my_first_table with two columns. The first column is named
first_column and has a data type of text; the second column has the name second_column and the
type integer. The table and column names follow the identifier syntax explained in Section 4.1.1.
The type names are usually also identifiers, but there are some exceptions. Note that the column list is
comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let’s look at a more realistic example:

40



Chapter 5. Data Definition

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i

(The numeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern for the
tables and columns. For instance, there is a choice of using singular or plural nouns for table names,
both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files to
unconditionally try to drop each table before creating it, ignoring the error messages.

If you need to modify a table that already exists look into Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience. If
you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of this
chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, the columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without having to know what
that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

41



Chapter 5. Data Definition

The default value may be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is that a t imestamp column may have a default of
now (), so that it gets set to the time of row insertion. Another common example is generating a “serial
number” for each row. In PostgreSQL this is typically done by something like

CREATE TABLE products (
product_no integer DEFAULT nextval (' products_product_no_seq’),

)i

where the nextval () function supplies successive values from a sequence object (see Section 9.12). This
arrangement is sufficiently common that there’s a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,

)i

The sERIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications, however,
the constraint they provide is too coarse. For example, a column containing a product price should prob-
ably only accept positive values. But there is no standard data type that accepts only positive numbers.
Another issue is that you might want to constrain column data with respect to other columns or rows.
For example, in a table containing product information, there should only be one row for each product
number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that would
violate a constraint, an error is raised. This applies even if the value came from the default value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)i

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK

42



Chapter 5. Data Definition

followed by an expression in parentheses. The check constraint expression should involve the column
thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer to
the constraint when you need to change it. The syntax is:

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive_price CHECK (price > 0)
)i

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed by
the constraint definition. (If you don’t specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted price,
and you want to ensure that the discounted price is lower than the regular price.

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed to
refer to only the column it is attached to. (PostgreSQL doesn’t enforce that rule, but you should follow it
if you want your table definitions to work with other database systems.) The above example could also be
written as

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)i

or even

CREATE TABLE products (
product_no integer,

43



Chapter 5. Data Definition

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)
)i

It’s a matter of taste.

Names can be assigned to table constraints in just the same way as for column constraints:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CONSTRAINT valid_discount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-null
constraint described in the next section can be used.

Check constraints can be useful for enhancing the performance of partitioned tables. For details see Sec-
tion 5.9.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

)i

A not-null constraint is always written as a column constraint. A not-null constraint is functionally equiv-
alent to creating a check constraint CHECK (column_name IS NOT NULL), but in PostgreSQL creating
an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit names to
not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
)i

44



Chapter 5. Data Definition

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
may be null. The NULL constraint is not defined in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.) Some
users, however, like it because it makes it easy to toggle the constraint in a script file. For example, you
could start with

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

)i

and then insert the NOT key word where desired.

Tip: In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with respect
to all the rows in the table. The syntax is

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

)i
when written as a column constraint, and

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

If a unique constraint refers to a group of columns, the columns are listed separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

45



Chapter 5. Data Definition

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn’t) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)i

In general, a unique constraint is violated when there are two or more rows in the table where the values
of all of the columns included in the constraint are equal. However, null values are not considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases may not follow this rule. So be careful when
developing applications that are intended to be portable.

5.3.4. Primary Keys

Technically, a primary key constraint is simply a combination of a unique constraint and a not-null con-
straint. So, the following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)i

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

Primary keys can also constrain more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)i

A primary key indicates that a column or group of columns can be used as a unique identifier for rows in
the table. (This is a direct consequence of the definition of a primary key. Note that a unique constraint
does not, by itself, provide a unique identifier because it does not exclude null values.) This is useful

46



Chapter 5. Data Definition

both for documentation purposes and for client applications. For example, a GUI application that allows
modifying row values probably needs to know the primary key of a table to be able to identify rows
uniquely.

A table can have at most one primary key (while it can have many unique and not-null constraints).
Relational database theory dictates that every table must have a primary key. This rule is not enforced by
PostgreSQL, but it is usually best to follow it.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between two
related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders table
only contains orders of products that actually exist. So we define a foreign key constraint in the orders
table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

)i

Now it is impossible to create orders with product_no entries that do not appear in the products table.

We say that in this situation the orders table is the referencing table and the products table is the referenced
table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

)i

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE tl (
a integer PRIMARY KEY,

47



Chapter 5. Data Definition

b integer,

c integer,

FOREIGN KEY (b, c) REFERENCES other_ table (cl, c2)
)i

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can contain more than one foreign key constraint. This is used to implement many-to-many rela-
tionships between tables. Say you have tables about products and orders, but now you want to allow one
order to contain possibly many products (which the structure above did not allow). You could use this
table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)i

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what if
a product is removed after an order is created that references it? SQL allows you to handle that as well.
Intuitively, we have a few options:

+ Disallow deleting a referenced product
+ Delete the orders as well
+ Something else?

To illustrate this, let’s implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (via order_items), we
disallow it. If someone removes an order, the order items are removed as well.

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

48



Chapter 5. Data Definition

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)i

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of a
referenced row. NO ACTION means that if any referencing rows still exist when the constraint is checked,
an error is raised; this is the default behavior if you do not specify anything. (The essential difference
between these two choices is that NO ACTION allows the check to be deferred until later in the transaction,
whereas RESTRICT does not.) CASCADE specifies that when a referenced row is deleted, row(s) referencing
it should be automatically deleted as well. There are two other options: SET NULL and SET DEFAULT.
These cause the referencing columns to be set to nulls or default values, respectively, when the referenced
row is deleted. Note that these do not excuse you from observing any constraints. For example, if an action
specifies SET DEFAULT but the default value would not satisfy the foreign key, the operation will fail.

Analogous to ON DELETE there is also oN UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same.

More information about updating and deleting data is in Chapter 6.

Finally, we should mention that a foreign key must reference columns that either are a primary key or
form a unique constraint. If the foreign key references a unique constraint, there are some additional
possibilities regarding how null values are matched. These are explained in the reference documentation
for CREATE TABLE.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these names
cannot be used as names of user-defined columns. (Note that these restrictions are separate from whether
the name is a key word or not; quoting a name will not allow you to escape these restrictions.) You do not
really need to be concerned about these columns, just know they exist.

oid
The object identifier (object ID) of a row. This column is only present if the table was created using

WITH OIDS, or if the default_with_oids configuration variable was set. This column is of type oid
(same name as the column); see Section 8.12 for more information about the type.

49



Chapter 5. Data Definition

tableoid

The OID of the table containing this row. This column is particularly handy for queries that select
from inheritance hierarchies (see Section 5.8), since without it, it’s difficult to tell which individual
table a row came from. The tableoid can be joined against the oid column of pg_class to obtain
the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of a row; each update of a row creates a new row version for the same logical row.)

cmin
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version. That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ctid can be used to
locate the row version very quickly, a row’s ctid will change each time it is updated or moved by
VACUUM FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even better a
user-defined serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs are
unique, unless you take steps to ensure that this is the case. If you need to identify the rows in a table,
using a sequence generator is strongly recommended. However, OIDs can be used as well, provided that
a few additional precautions are taken:

+ A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such a unique constraint (or unique index) exists, the system takes care
not to generate an OID matching an already-existing row. (Of course, this is only possible if the table
contains fewer than 2°? (4 billion) rows, and in practice the table size had better be much less than that,
or performance may suffer.)

« OIDs should never be assumed to be unique across tables; use the combination of tableoid and row
OID if you need a database-wide identifier.

« The tables in question should be created using WITH 0IDS. As of PostgreSQL 8.1, WITHOUT OIDS is
the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction IDs
to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter 22 for
details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term (more
than one billion transactions).

50



Chapter 5. Data Definition

Command identifiers are also 32-bit quantities. This creates a hard limit of 2** (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on number of
SQL commands, not number of rows processed.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the application
change, then you can drop the table and create it again. But this is not a convenient option if the table
is already filled with data, or if the table is referenced by other database objects (for instance a foreign
key constraint). Therefore PostgreSQL provides a family of commands to make modifications to existing
tables. Note that this is conceptually distinct from altering the data contained in the table: here we are
interested in altering the definition, or structure, of the table.

You can

« Add columns,

« Remove columns,

« Add constraints,

« Remove constraints,

» Change default values,

« Change column data types,
« Rename columns,

« Rename tables.

All these actions are performed using the ALTER TABLE command.

5.5.1. Adding a Column

To add a column, use a command like this:
ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don’t specify a DEFAULT
clause).

You can also define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMN description text CHECK (description <> ");

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you’ve filled in the new column correctly.

5.5.2. Removing a Column

To remove a column, use a command like this:

ALTER TABLE products DROP COLUMN description;

51



Chapter 5. Data Definition

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will not
silently drop that constraint. You can authorize dropping everything that depends on the column by adding
CASCADE:!

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.11 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can be
added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that’s easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can be
helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like $2, don’t forget that you’ll need to double-quote
it to make it a valid identifier.)

As with dropping a column, you need to add caSCADE if you want to drop a constraint that something else
depends on. An example is that a foreign key constraint depends on a unique or primary key constraint on
the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint use
ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

52



Chapter 5. Data Definition

5.5.5. Changing a Column’s Default Value
To set a new default for a column, use a command like this:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn’t affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use
ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn’t been defined, because the default is implicitly the null value.

5.5.6. Changing a Column’s Data Type
To convert a column to a different data type, use a command like this:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If a more complex conversion is needed, you can add a USING clause that specifies how to compute
the new values from the old.

PostgreSQL will attempt to convert the column’s default value (if any) to the new type, as well as any
constraints that involve the column. But these conversions may fail, or may produce surprising results.
It’s often best to drop any constraints on the column before altering its type, and then add back suitably
modified constraints afterwards.

5.5.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.5.8. Renaming a Table

To rename a table:

ALTER TABLE products RENAME TO items;

53



Chapter 5. Data Definition

5.6. Privileges

When you create a database object, you become its owner. By default, only the owner of an object can
do anything with the object. In order to allow other users to use it, privileges must be granted. (However,
users that have the superuser attribute can always access any object.)

There are several different privileges: SELECT, INSERT, UPDATE, DELETE, RULE, REFERENCES,
TRIGGER, CREATE, TEMPORARY, EXECUTE, and USAGE. The privileges applicable to a particular object
vary depending on the object’s type (table, function, etc). For complete information on the different types
of privileges supported by PostgreSQL, refer to the GRANT reference page. The following sections and
chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

Note: To change the owner of a table, index, sequence, or view, use the ALTER TABLE command.
There are corresponding ALTER commands for other object types.

To assign privileges, the GRANT command is used. For example, if joe is an existing user, and accounts
is an existing table, the privilege to update the table can be granted with

GRANT UPDATE ON accounts TO joe;
To grant a privilege to a group, use this syntax:
GRANT SELECT ON accounts TO GROUP staff;
The special “user” name PUBLIC can be used to grant a privilege to every user on the system. Writing

ALL in place of a specific privilege grants all privileges that are relevant for the object type.

To revoke a privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to revoke
his own ordinary privileges, for example to make a table read-only for himself as well as others.

Ordinarily, only the object’s owner (or a superuser) can grant or revoke privileges on an object. However,
it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant it in
turn to others. If the grant option is subsequently revoked then all who received the privilege from that
recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT and
REVOKE reference pages.

5.7. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client connection
to the server can access only the data in a single database, the one specified in the connection request.

54



Chapter 5. Data Definition

Note: Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of user names means that there cannot be different users named, say, joe in two databases in
the same cluster; but the system can be configured to allow joe access to only some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name can
be used in different schemas without conflict; for example, both schemal and myschema may contain
tables named mytable. Unlike databases, schemas are not rigidly separated: a user may access objects in
any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

« To allow many users to use one database without interfering with each other.
« To organize database objects into logical groups to make them more manageable.

+ Third-party applications can be put into separate schemas so they cannot collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be nested.

5.7.1. Creating a Schema

To create a schema, use the command CREATE SCHEMA. Give the schema a name of your choice. For
example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax

database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you write a
database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use

CREATE TABLE myschema.mytable (

)i

55



Chapter 5. Data Definition

To drop a schema if it’s empty (all objects in it have been dropped), use
DROP SCHEMA myschema;

To drop a schema including all contained objects, use
DROP SCHEMA myschema CASCADE;

See Section 5.11 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schemaname AUTHORIZATION username;

You can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.7.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and may not be created by users.

5.7.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default, such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains such
a schema. Thus, the following are equivalent:

CREATE TABLE products ( ... );
and

CREATE TABLE public.products ( ... );

5.7.3. The Schema Search Path

Qualified names are tedious to write, and it’s often best not to wire a particular schema name into applica-
tions anyway. Therefore tables are often referred to by unqualified names, which consist of just the table
name. The system determines which table is meant by following a search path, which is a list of schemas
to look in. The first matching table in the search path is taken to be the one wanted. If there is no match in
the search path, an error is reported, even if matching table names exist in other schemas in the database.

The first schema named in the search path is called the current schema. Aside from being the first schema
searched, it is also the schema in which new tables will be created if the CREATE TABLE command does
not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;

In the default setup this returns:

56



Chapter 5. Data Definition

search_path

Suser,public

The first element specifies that a schema with the same name as the current user is to be searched. If no
such schema exists, the entry is ignored. The second element refers to the public schema that we have
seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration, any
unqualified access again can only refer to the public schema.

To put our new schema in the path, we use
SET search_path TO myschema,public;

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE mytable;
Also, since myschema is the first element in the path, new objects would by default be created in it.
We could also have written

SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing special
about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.19 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision: you
must write

OPERATOR (schema.operator)
This is needed to avoid syntactic ambiguity. An example is
SELECT 3 OPERATOR (pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so ugly
as that.

5.7.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of the
schema needs to grant the USAGE privilege on the schema. To allow users to make use of the objects in the
schema, additional privileges may need to be granted, as appropriate for the object.

57



Chapter 5. Data Definition

A user can also be allowed to create objects in someone else’s schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE privileges on
the schema public. This allows all users that are able to connect to a given database to create objects in
its public schema. If you do not want to allow that, you can revoke that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.7.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema, which
contains the system tables and all the built-in data types, functions, and operators. pg_catalog is always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path’s schemas. This ensures that built-in names will always be findable. However,
you may explicitly place pg_catalog at the end of your search path if you prefer to have user-defined
names override built-in names.

In PostgreSQL versions before 7.3, table names beginning with pg_ were reserved. This is no longer true:
you may create such a table name if you wish, in any non-system schema. However, it’s best to continue
to avoid such names, to ensure that you won’t suffer a conflict if some future version defines a system
table named the same as your table. (With the default search path, an unqualified reference to your table
name would be resolved as the system table instead.) System tables will continue to follow the convention
of having names beginning with pg_, so that they will not conflict with unqualified user-table names so
long as users avoid the pg__ prefix.

5.7.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns that are recom-
mended and are easily supported by the default configuration:

« If you do not create any schemas then all users access the public schema implicitly. This simulates the
situation where schemas are not available at all. This setup is mainly recommended when there is only
a single user or a few cooperating users in a database. This setup also allows smooth transition from the
non-schema-aware world.

« You can create a schema for each user with the same name as that user. Recall that the default search
path starts with $user, which resolves to the user name. Therefore, if each user has a separate schema,
they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it alto-
gether), so users are truly constrained to their own schemas.

» To install shared applications (tables to be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow the

58



Chapter 5. Data Definition

other users to access them. Users can then refer to these additional objects by qualifying the names with
a schema name, or they can put the additional schemas into their search path, as they choose.

5.7.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does not
exist. Moreover, some implementations do not allow you to create schemas that have a different name
than their owner. In fact, the concepts of schema and user are nearly equivalent in a database system
that implements only the basic schema support specified in the standard. Therefore, many users consider
qualified names to really consist of username. tablename. This is how PostgreSQL will effectively behave
if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to the
standard, you should not use (perhaps even remove) the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace sup-
port by allowing (possibly limited) cross-database access. If you need to work with those systems, then
maximum portability would be achieved by not using schemas at all.

5.8. Inheritance

PostgreSQL implements table inheritance which can be a useful tool for database designers. (SQL:1999
and later define a type inheritance feature, which differs in many respects from the features described
here.)

Let’s start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capitals table so that it
inherits from cities:

CREATE TABLE cities (

name text,
population float,
altitude int —-— in feet

)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals also
have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.

59



Chapter 5. Data Definition

For example, the following query finds the names of all cities, including state capitals, that are located at
an altitude over 500ft:

SELECT name, altitude
FROM cities

WHERE altitude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | altitude
___________ S
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude over 500ft:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953

Here the oNLY keyword indicates that the query should apply only to cities, and not any tables below
cities in the inheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the ONLY keyword.

In some cases you may wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude

__________ o
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities ¢, pg_class p

60



Chapter 5. Data Definition

WHERE c.altitude > 500 and c.tableoid = p.oid;

which returns:

relname | name | altitude
__________ T
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in the
inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, altitude, state)
VALUES (’'New York’, NULL, NULL, ’'NY’);

‘We might hope that the data would somehow be routed to the capitals table, but this does not happen:
INSERT always inserts into exactly the table specified. In some cases it is possible to redirect the insertion
using a rule (see Chapter 34). However that does not help for the above case because the cities table
does not contain the column state, and so the command will be rejected before the rule can be applied.

Check constraints can be defined on tables within an inheritance hierarchy. All check constraints on a
parent table are automatically inherited by all of its children. Other types of constraints are not inherited,
however.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table’s definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child’s definition, then
these columns are “merged” so that there is only one such column in the child table. To be merged,
columns must have the same data types, else an error is raised. The merged column will have copies of all
the check constraints coming from any one of the column definitions it came from.

Table inheritance can currently only be defined using the CREATE TABLE statement. The related state-
ment CREATE TABLE AS does not allow inheritance to be specified. There is no way to add an inheritance
link to make an existing table into a child table. Similarly, there is no way to remove an inheritance link
from a child table once it has been defined, other than by dropping the table completely. A parent table
cannot be dropped while any of its children remain. If you wish to remove a table and all of its descen-
dants, one easy way is to drop the parent table with the CASCADE option.

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns or constraints on parent tables is only possible when using
the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and rejection
that apply during CREATE TABLE.

5.8.1. Caveats

Table access permissions are not automatically inherited. Therefore, a user attempting to access a parent
table must either have permissions to do the operation on all its child tables as well, or must use the ONLY
notation. When adding a new child table to an existing inheritance hierarchy, be careful to grant all the
needed permissions on it.

61



Chapter 5. Data Definition

A serious limitation of the inheritance feature is that indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. This is true on both the
referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above example:

« If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would by
default show up in queries from cities. In fact, by default capitals would have no unique constraint
at all, and so could contain multiple rows with the same name. You could add a unique constraint to
capitals, but this would not prevent duplication compared to cities.

- Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint would
not automatically propagate to capitals. In this case you could work around it by manually adding
the same REFERENCES constraint to capitals.

« Specifying that another table’s column REFERENCES cities (name) would allow the other table to
contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable care is
needed in deciding whether inheritance is useful for your problem.

Deprecated: In previous versions of PostgreSQL, the default behavior was not to include child tables
in queries. This was found to be error prone and is also in violation of the SQL standard. Under the
old syntax, to include the child tables you append « to the table name. For example:

SELECT * from citiesx;

You can still explicitly specify scanning child tables by appending «, as well as explicitly specify not
scanning child tables by writing onLy. But beginning in version 7.1, the default behavior for an undec-
orated table name is to scan its child tables too, whereas before the default was not to do so. To get
the old default behavior, disable the sql_inheritance configuration option.

5.9. Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how you can implement
partitioning as part of your database design.

5.9.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

+ Query performance can be improved dramatically for certain kinds of queries.

« Update performance can be improved too, since each piece of the table has indexes smaller than an
index on the entire data set would be. When an index no longer fits easily in memory, both read and
write operations on the index take progressively more disk accesses.

62



Chapter 5. Data Definition

« Bulk deletes may be accomplished by simply removing one of the partitions, if that requirement is
planned into the partitioning design. DROP TABLE is far faster than a bulk DELETE, to say nothing of
the ensuing vACUUM overhead.

« Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of thumb
is that the size of the table should exceed the physical memory of the database server.

Currently, PostgreSQL supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent the
entire data set. You should be familiar with inheritance (see Section 5.8) before attempting to implement
partitioning.

The following forms of partitioning can be implemented in PostgreSQL.:

Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by date
ranges, or by ranges of identifiers for particular business objects.

List Partitioning
The table is partitioned by explicitly listing which key values appear in each partition.

Hash partitioning is not currently supported.

5.9.2. Implementing Partitioning

To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

This table will contain no data. Do not define any check constraints on this table, unless you intend
them to be applied equally to all partitions. There is no point in defining any indexes or unique
constraints on it, either.

2. Create several “child” tables that each inherit from the master table. Normally, these tables will not
add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal PostgreSQL tables.
3. Add table constraints to the partition tables to define the allowed key values in each partition.

Typical examples would be:

CHECK ( x = 1)
CHECK ( county IN ( ’'Oxfordshire’, ’'Buckinghamshire’, ’'Warwickshire’ ))
CHECK ( outletID >= 100 AND outletID < 200 )
Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like this:

CHECK ( outletID BETWEEN 100 AND 200 )
CHECK ( outletID BETWEEN 200 AND 300 )
This is wrong since it is not clear which partition the key value 200 belongs in.

63



Chapter 5. Data Definition

Note that there is no difference in syntax between range and list partitioning; those terms are descrip-

tive only.

4. For each partition, create an index on the key column(s), as well as any other indexes you might want.
(The key index is not strictly necessary, but in most scenarios it is helpful. If you intend the key values
to be unique then you should always create a unique or primary-key constraint for each partition.)

5. Optionally, define a rule or trigger to redirect modifications of the master table to the appropriate

partition.

6. Ensure that the constraint_exclusion configuration parameter is enabled in postgresqgl . conf. With-
out this, queries will not be optimized as desired.

For example, suppose we are constructing a database for a large ice cream company. The company mea-
sures peak temperatures every day as well as ice cream sales in each region. Conceptually, we want a table

like this:

CREATE TABLE measurement (

city_id
logdate
peaktemp
unitsales

)i

int not null,
date not null,
int,

int

We know that most queries will access just the last week’s, month’s or quarter’s data, since the main use
of this table will be to prepare online reports for management. To reduce the amount of old data that needs
to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning of each month
we will remove the oldest month’s data.

In this situation we can use partitioning to help us meet all of our different requirements for the measure-
ments table. Following the steps outlined above, partitioning can be set up as follows:

1. The master table is the measurement table, declared exactly as above.

2. Next we create one partition for each active month:

CREATE TABLE measurement_yy04mm02
CREATE TABLE measurement_yy04mm03

CREATE TABLE measurement_yy05mmll
CREATE TABLE measurement_yy05mml2
CREATE TABLE measurement_yy06mm01
Each of the partitions are complete tables in their own right, but they inherit their definition from the

measurement table.

(
(

(
(
(

)
)

)
)
)

INHERITS (measurement) ;
INHERITS (measurement) ;

INHERITS (measurement) ;
INHERITS (measurement) ;
INHERITS (measurement) ;

This solves one of our problems: deleting old data. Each month, all we will need to do is perform a
DROP TABLE on the oldest child table and create a new child table for the new month’s data.
3. We must add non-overlapping table constraints, so that our table creation script becomes:

CREATE TABLE measurement_yy04mm02

CHECK
) INHERITS

(

( logdate >= DATE ’'2004-02-01" AND logdate < DATE

(measurement) ;

CREATE TABLE measurement_yy04mm03
( logdate >= DATE ’2004-03-01" AND logdate < DATE

CHECK
) INHERITS

(measurement) ;

(

72004-03-01"

2004-04-01"

64

)

)



Chapter 5. Data Definition

CREATE TABLE measurement_yy05mmll (

CHECK ( logdate >= DATE ’2005-11-01" AND logdate < DATE
) INHERITS (measurement);
CREATE TABLE measurement_yy05mml2 (

CHECK ( logdate >= DATE ’'2005-12-01’ AND logdate < DATE
) INHERITS (measurement);
CREATE TABLE measurement_yy06mm01l (

CHECK ( logdate >= DATE ’2006-01-01" AND logdate < DATE
) INHERITS (measurement);

72005-12-01" )

2006-01-01" )

72006-02-01" )

4. We probably need indexes on the key columns too:

CREATE
CREATE
CREATE
CREATE
CREATE

INDEX measurement_yy04mm02_logdate
INDEX measurement_yy04mm03_logdate

INDEX measurement_yy05mmll_logdate
INDEX measurement_yy05mml2_logdate
INDEX measurement_yyO0o6mmOl_logdate

We choose not to add further indexes at this time.
5. If data will be added only to the latest partition, we can set up a very simple rule to insert data. We
must redefine this each month so that it always points to the current partition.

ON
ON

ON
ON
ON

measurement_yy04mm02
measurement_yy04mm03

measurement_yy05mmll
measurement_yy05mml2
measurement_yy06mm01

CREATE OR REPLACE RULE measurement_current_partition AS
ON INSERT TO measurement
DO INSTEAD

INSERT INTO measurement_yy06mm0l VALUES

( NEW.city_id,
NEW. logdate,
NEW.peaktemp,
NEW.unitsales );

(logdate) ;
(logdate) ;

(logdate) ;
(logdate) ;
(logdate) ;

We might want to insert data and have the server automatically locate the partition into which the row
should be added. We could do this with a more complex set of rules as shown below.

CREATE RULE measurement_insert_yy04mmO2 AS

ON INSERT TO measurement WHERE

(

DO INSTEAD
INSERT INTO measurement_yy04mm02 VALUES

CREATE RULE measurement_insert_yy05mml2 AS

ON INSERT TO measurement WHERE

(

DO INSTEAD
INSERT INTO measurement_yy0bmml2 VALUES

CREATE RULE measurement_insert_yyO6mmOl AS

ON INSERT TO measurement WHERE

(

DO INSTEAD
INSERT INTO measurement_yy06mmOl VALUES

logdate >= DATE ’2004-02-01" AND logdate < DATE

logdate >= DATE ’2006-01-01" AND logdate < DATE

( NEW.city_id,
NEW. logdate,
NEW.peaktemp,
NEW.unitsales );

logdate >= DATE ’2005-12-01" AND logdate < DATE ’2006-01-01"

( NEW.city_id,
NEW. logdate,
NEW.peaktemp,
NEW.unitsales );

( NEW.city_id,

72004-03-01"

72006-02-01"

65



Chapter 5. Data Definition

NEW. logdate,
NEW.peaktemp,
NEW.unitsales );

Note that the WHERE clause in each rule exactly matches the the CHECK constraint for its partition.

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the above
example we would be creating a new partition each month, so it may be wise to write a script that generates
the required DDL automatically.

The following caveats apply:

+ There is currently no way to verify that all of the CHECK constraints are mutually exclusive. Care is
required by the database designer.

« There is currently no simple way to specify that rows must not be inserted into the master table. A
CHECK (false) constraint on the master table would be inherited by all child tables, so that cannot
be used for this purpose. One possibility is to set up an ON INSERT trigger on the master table that
always raises an error. (Alternatively, such a trigger could be used to redirect the data into the proper
child table, instead of using a set of rules as suggested above.)

Partitioning can also be arranged using a UNION ALL view:

CREATE VIEW measurement AS
SELECT % FROM measurement_yy04mm02
UNION ALL SELECT * FROM measurement_yy04mm03

UNION ALL SELECT * FROM measurement_yy05mmll
UNION ALL SELECT % FROM measurement_yy05mml2
UNION ALL SELECT % FROM measurement_yy0é6mmO1l;

However, constraint exclusion is currently not supported for partitioned tables defined in this manner.
Also, the need to recreate the view adds an extra step to adding and dropping individual partitions of the
dataset.

5.9.3. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned tables
defined in the fashion described above. As an example:

SET constraint_exclusion = on;
SELECT count (x) FROM measurement WHERE logdate >= DATE '2006-01-01';

Without constraint exclusion, the above query would scan each of the partitions of the measurement
table. With constraint exclusion enabled, the planner will examine the constraints of each partition and try
to prove that the partition need not be scanned because it could not contain any rows meeting the query’s
WHERE clause. When the planner can prove this, it excludes the partition from the query plan.

You can use the EXPLAIN command to show the difference between a plan with
constraint_exclusion on and a plan with it off. A typical default plan for this type of table setup is:

66



Chapter 5. Data Definition

SET constraint_exclusion = off;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2006-01-01'";

QUERY PLAN

Aggregate (cost=158.66..158.68 rows=1 width=0)
-> Append (cost=0.00..151.88 rows=2715 width=0)

-> Seqg Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= "2006-01-01'::date)
-> Seqg Scan on measurement_yy04mm02 measurement (cost=0.00..30.38 rows=543 w
Filter: (logdate >= "2006-01-01'::date)
-> Seqg Scan on measurement_yy04mm03 measurement (cost=0.00..30.38 rows=543 w
Filter: (logdate >= "2006-01-01'::date)
-> Seqg Scan on measurement_yy05mml2 measurement (cost=0.00..30.38 rows=543 w
Filter: (logdate >= "2006-01-01'::date)
-> Seqg Scan on measurement_yy0émm0Ol measurement (cost=0.00..30.38 rows=543 w
Filter: (logdate >= '2006-01-01'::date)
Some or all of the partitions might use index scans instead of full-table sequential scans, but the point here
is that there is no need to scan the older partitions at all to answer this query. When we enable constraint
exclusion, we get a significantly reduced plan that will deliver the same answer:
SET constraint_exclusion = on;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2006-01-01'";
QUERY PLAN
Aggregate (cost=63.47..63.48 rows=1 width=0)
-> Append (cost=0.00..60.75 rows=1086 width=0)
—-> Seqg Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= "2006-01-01'::date)
-> Seqg Scan on measurement_yy06émmOl measurement (cost=0.00..30.38 rows=543 w

Filter: (logdate >= ’2006-01-01’::date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes. There-
fore it isn’t necessary to define indexes on the key columns. Whether an index needs to be created for a
given partition depends on whether you expect that queries that scan the partition will generally scan a
large part of the partition or just a small part. An index will be helpful in the latter case but not the former.

The following caveats apply:

+ Constraint exclusion only works when the query’s WHERE clause contains constants. A parameterized
query will not be optimized, since the planner cannot know what partitions the parameter value might
select at runtime. For the same reason, “stable” functions such as CURRENT_DATE must be avoided.
Joining the partition key to a column of another table will not be optimized, either.

« Avoid cross-datatype comparisons in the CHECK constraints, as the planner will currently fail to prove
such conditions false. For example, the following constraint will work if x is an integer column, but
notif xisabigint:

CHECK ( x = 1)
For a bigint column we must use a constraint like:

67



Chapter 5. Data Definition

CHECK ( x = 1l::bigint )
The problem is not limited to the bigint data type — it can occur whenever the default data type of
the constant does not match the data type of the column to which it is being compared. Cross-datatype
comparisons in the supplied queries are usually OK, just not in the CHECK conditions.

+ UPDATE and DELETE commands against the master table do not currently perform constraint exclusion.

« All constraints on all partitions of the master table are considered for constraint exclusion, so large
numbers of partitions are likely to increase query planning time considerably.

« Don’t forget that you still need to run ANALYZE on each partition individually. A command like

ANALYZE measurement;
will only process the master table.

5.10. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they are
not the only objects that exist in a database. Many other kinds of objects can be created to make the use
and management of the data more efficient or convenient. They are not discussed in this chapter, but we
give you a list here so that you are aware of what is possible.

+ Views

+ Functions and operators

+ Data types and domains

« Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.11. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you will implicitly create a net of dependencies between the objects. For instance,
a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we had
considered in Section 5.3.5, with the orders table depending on it, would result in an error message such
as this:

DROP TABLE products;
NOTICE: constraint orders_product_no_fkey on table orders depends on table products

ERROR: cannot drop table products because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.

68



Chapter 5. Data Definition

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check what brROP ... cAscaDE will do, run DROP
without CASCADE and read the NOTICE messages.)

All drop commands in PostgreSQL support specifying CASCADE. Of course, the nature of the possible
dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE to get
the default behavior, which is to prevent drops of objects that other objects depend on.

Note: According to the SQL standard, specifying either RESTRICT or cASCADE is required. No database
system actually enforces that rule, but whether the default behavior is RESTRICT or CASCADE varies
across systems.

Note: Foreign key constraint dependencies and serial column dependencies from PostgreSQL ver-
sions prior to 7.3 are not maintained or created during the upgrade process. All other dependency
types will be properly created during an upgrade from a pre-7.3 database.

69



Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. We also
introduce ways to effect automatic data changes when certain events occur: triggers and rewrite rules. The
chapter after this will finally explain how to extract your long-lost data back out of the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use is
to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more than one
row, but there is no way to insert less than one row at a time. Even if you know only some column values,
a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and a value for
each of the columns of the table. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, ’Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To avoid
that you can also list the columns explicitly. For example, both of the following commands have the same
effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES (’Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns will be
filled with their default values. For example,

INSERT INTO products (product_no, name) VALUES (1, ’Cheese’);
INSERT INTO products VALUES (1, ’'Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, ’'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

70



Chapter 6. Data Manipulation

Tip: To do “bulk loads”, that is, inserting a lot of data, take a look at the COPY command. It is not as
flexible as the INSERT command, but is more efficient. Refer to Section 13.4 for more information on
improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update individual
rows, all the rows in a table, or a subset of all rows. Each column can be updated separately; the other
columns are not affected.

To perform an update, you need three pieces of information:

1. The name of the table and column to update,
2. The new value of the column,
3. Which row(s) to update.

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it is
not necessarily possible to directly specify which row to update. Instead, you specify which conditions
a row must meet in order to be updated. Only if you have a primary key in the table (no matter whether
you declared it or not) can you reliably address individual rows, by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:
UPDATE products SET price = 10 WHERE price = 5;

This may cause zero, one, or many rows to be updated. It is not an error to attempt an update that does not
match any rows.

Let’s look at that command in detail. First is the key word UPDATE followed by the table name. As usual,
the table name may be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equals sign and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products by
10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clause is an
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity. Of
course, the WHERE condition does not have to be an equality test. Many other operators are available (see
Chapter 9). But the expression needs to evaluate to a Boolean result.

71



Chapter 6. Data Manipulation

You can update more than one column in an UPDATE command by listing more than one assignment in
the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to discuss how
to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can only
remove entire rows from a table. In the previous section we explained that SQL does not provide a way
to directly address individual rows. Therefore, removing rows can only be done by specifying conditions
that the rows to be removed have to match. If you have a primary key in the table then you can specify the
exact row. But you can also remove groups of rows matching a condition, or you can remove all rows in
the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use

DELETE FROM products WHERE price = 10;

If you simply write
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

72



Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data out of the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

SELECT select_list FROM table_expression [sort_specification]

The following sections describe the details of the select list, the table expression, and the sort specification.

A simple kind of query has the form

SELECT » FROM tablel;

Assuming that there is a table called tablel, this command would retrieve all rows and all columns from
tablel. (The method of retrieval depends on the client application. For example, the psql program will
display an ASCII-art table on the screen, while client libraries will offer functions to extract individual
values from the query result.) The select list specification » means all columns that the table expression
happens to provide. A select list can also select a subset of the available columns or make calculations
using the columns. For example, if tablel has columns named a, b, and c (and perhaps others) you can
make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM tablel is a particularly simple kind of table expression: it reads just one table. In general, table
expressions can be complex constructs of base tables, joins, and subqueries. But you can also omit the
table expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could call
a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally fol-
lowed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table on

73



Chapter 7. Queries

disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of succes-
sive transformations performed on the table derived in the FROM clause. All these transformations produce
a virtual table that provides the rows that are passed to the select list to compute the output rows of the

query.

7.2.1. The rroM Clause

The FROM Clause derives a table from one or more other tables given in a comma-separated table refer-
ence list.

FROM table reference [, table_reference [, ...]]

A table reference may be a table name (possibly schema-qualified), or a derived table such as a subquery,
a table join, or complex combinations of these. If more than one table reference is listed in the FrROM
clause they are cross-joined (see below) to form the intermediate virtual table that may then be subject to
transformations by the WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall table
expression.

When a table reference names a table that is the supertable of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its subtable successors, unless the key word ONLY
precedes the table name. However, the reference produces only the columns that appear in the named table
— any columns added in subtables are ignored.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available.

Join Types
Cross join
T1 CROSS JOIN T2

For each combination of rows from 71 and 72, the derived table will contain a row consisting of
all columns in 71 followed by all columns in T2. If the tables have N and M rows respectively, the
joined table will have N * M rows.

FROM T1 CROSS JOIN T2 is equivalent to FROM 711, T2.Itis also equivalent to FROM T1 INNER
JOIN T2 ON TRUE (see below).

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER

Tl NATURAL [INNER] | { LEFT | RIGHT | FULL [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and FULL
imply an outer join.

74

] ] } JOIN T2 ON boolean_expression
71 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING ( join column list
{ }

)



Chapter 7. Queries

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL. The
join condition determines which rows from the two source tables are considered to “match”, as
explained in detail below.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from 71 and 72 match if the ON expression
evaluates to true for them.

USING is a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs
of columns. Furthermore, the output of a JOIN USING has one column for each of the equated pairs
of input columns, followed by all of the other columns from each table. Thus, USING (a, b, c)
is equivalent to ON (tl.a = t2.a AND tl.b = t2.b AND tl.c = t2.c) with the exception
that if oN is used there will be two columns a, b, and c in the result, whereas with USING there will
be only one of each.

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of exactly those
column names that appear in both input tables. As with USING, these columns appear only once in
the output table.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined
table unconditionally has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will unconditionally have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

Joins of all types can be chained together or nested: either or both of 71 and 72 may be joined tables.
Parentheses may be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

To put this together, assume we have tables t 1

75



Chapter 7. Queries

2 | b
3 | ¢
and t2
num | value
77777 +7777777
1 | xxxX
3 1 yyy
5 | zzz

then we get the following results for the various joins:

=> SELECT * FROM t1l CROSS JOIN t2;
num | name | num | value

| xxx
| yyy
| zzz
| xxx
| yyy
| zzz
| xxx
\

\

YYy
277

W w NN

w
g wrE O wkEF o wkRE

=> SELECT x FROM tl INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— ot
11 a | 1 | xxx
31 ¢ Il 3 1 yyy
(2 rows)

=> SELECT x FROM tl INNER JOIN t2 USING (num);

num | name | value
_____ e
1 | a | xxx
31 ¢ | yyy
(2 rows)

=> SELECT x FROM tl NATURAL INNER JOIN t2;

num | name | value
_____ o
1 | a | xxx
31 ¢ I yyy
(2 rows)

=> SELECT x FROM tl LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
_____ O TR
11 a | 1 | xxx
I b | \

76



Chapter 7. Queries

31 ¢ Il 3 1 yyy
(3 rows)

=> SELECT * FROM tl LEFT JOIN t2 USING (num);

num | name | value
_____ o
1 | a | xxx
2 | b |
3 1 c | yyy
(3 rows)

=> SELECT x FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

num | name | num value
————— R A
11 a | 1 | xxx
3 1 c | 3 1 yyy
| | 5 | zzz
(3 rows)

=> SELECT x FROM tl FULL JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— ot
11 a | 1 | xxx
2 1 b I \
31 c Il 3 | yyy
| | 5 | zzz
(4 rows)

The join condition specified with ON can also contain conditions that do not relate directly to the join. This
can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM tl1l LEFT JOIN t2 ON tl.num = t2.num AND t2.value = 'xxx’;

num | name | num | value
_____ IO TR
1] a | 1 | xxx
2 | b | \
3 1 c | \
(3 rows)

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table_reference AS alias

or

77



Chapter 7. Queries
FROM table_reference alias

The As key word is noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT % FROM some_very_long_table_name s JOIN another_fairly_long_name a ON s.id = a.

The alias becomes the new name of the table reference for the current query — it is no longer possible to
refer to the table by the original name. Thus

SELECT % FROM my_table AS m WHERE my_table.a > 5;

is not valid SQL syntax. What will actually happen (this is a PostgreSQL extension to the standard) is that
an implicit table reference is added to the FrROM clause, so the query is processed as if it were written as

SELECT * FROM my_table AS m, my_table AS my_table WHERE my_table.a > 5;

which will result in a cross join, which is usually not what you want.

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.,

SELECT x FROM my_table AS a CROSS JOIN my_table AS b

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. The following statement will assign the alias b to the result
of the join, unlike the previous example:

SELECT % FROM (my_table AS a CROSS JOIN my_table) AS b

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table reference [AS] alias ( columnl [, column2 [, ...1]1 )

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JOIN clause, using any of these forms, the alias hides the
original names within the JOIN. For example,

SELECT a.* FROM my_table AS a JOIN your_table AS b ON
is valid SQL, but
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid: the table alias a is not visible outside the alias c.

78



Chapter 7. Queries

7.2.1.3. Subqueries
Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table alias

name. (See Section 7.2.1.2.) For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which can’t be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like a table, view, or subquery in the FROM clause of
a query. Columns returned by table functions may be included in SELECT, JOIN, or WHERE clauses in the
same manner as a table, view, or subquery column.

If a table function returns a base data type, the single result column is named like the function. If the
function returns a composite type, the result columns get the same names as the individual attributes of
the type.

A table function may be aliased in the FROM clause, but it also may be left unaliased. If a function is used
in the FrROM clause with no alias, the function name is used as the resulting table name.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo (int) RETURNS SETOF foo AS $$
SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT x FROM getfoo(l) AS tl;

SELECT % FROM foo
WHERE foosubid IN (select foosubid from getfoo(foo.fooid) z
where z.fooid = foo.fooid);

CREATE VIEW vw_getfoo AS SELECT % FROM getfoo(l);

SELECT % FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on how
they are invoked. To support this, the table function can be declared as returning the pseudotype record.
When such a function is used in a query, the expected row structure must be specified in the query itself,
so that the system can know how to parse and plan the query. Consider this example:

SELECT =
FROM dblink ('’ dbname=mydb’, ’select proname, prosrc from pg_proc’)
AS tl (proname name, prosrc text)

79



Chapter 7. Queries

WHERE proname LIKE ’bytea%’;

The dblink function executes a remote query (see contrib/dblink). It is declared to return record
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what « should expand to.

7.2.2. The wHERE Clause

The syntax of the WHERE Clause is
WHERE search _condition

where search_condition is any value expression (see Section 4.2) that returns a value of type

boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(that is, if the result is false or null) it is discarded. The search condition typically references at least some
column of the table generated in the FROM clause; this is not required, but otherwise the WHERE clause will
be fairly useless.

Note: The join condition of an inner join can be written either in the wHERE clause or in the Jo1n clause.
For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5
and

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The Jo1n syntax in the From clause is probably
not as portable to other SQL database management systems. For outer joins there is no choice in any
case: they must be done in the Froum clause. An on/usING clause of an outer join is not equivalent to
a wHERE condition, because it determines the addition of rows (for unmatched input rows) as well as
the removal of rows from the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE cl > 5

SELECT ... FROM fdt WHERE cl IN (1, 2, 3)

SELECT ... FROM fdt WHERE cl IN (SELECT cl FROM t2)

SELECT ... FROM fdt WHERE cl IN (SELECT c¢3 FROM t2 WHERE c2 = fdt.cl + 10)

80



Chapter 7. Queries
SELECT ... FROM fdt WHERE cl BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.cl + 10) AND 100
SELECT ... FROM fdt WHERE EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

£dt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from £dt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how f£dt is referenced in
the subqueries. Qualifying c1 as £dt . c1 is only necessary if c1 is also the name of a column in the derived
input table of the subquery. But qualifying the column name adds clarity even when it is not needed. This
example shows how the column naming scope of an outer query extends into its inner queries.

7.2.3. The crourP BY and HAVING Clauses

After passing the WHERE filter, the derived input table may be subject to grouping, using the GROUP BY
clause, and elimination of group rows using the HAVING clause.

SELECT select_list
FROM
[WHERE ...]

GROUP BY grouping_column_reference [, grouping_column_reference] ...

The GROUP BY Clause is used to group together those rows in a table that share the same values in all
the columns listed. The order in which the columns are listed does not matter. The effect is to combine
each set of rows sharing common values into one group row that is representative of all rows in the group.
This is done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.
For instance:

=> SELECT x FROM testl;

a
c
b
a
4

(

(3 rows)

In the second query, we could not have written SELECT » FROM testl GROUP BY x, because there is
no single value for the column y that could be associated with each group. The grouped-by columns can
be referenced in the select list since they have a single value in each group.

81



Chapter 7. Queries

In general, if a table is grouped, columns that are not used in the grouping cannot be referenced except in
aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

x | sum

Here sum is an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.15.

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a col-
umn. This can also be achieved using the p1sTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales on all
products).

SELECT product_id, p.name, (sum(s.units) % p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause since
they are referenced in the query select list. (Depending on how exactly the products table is set up, name
and price may be fully dependent on the product ID, so the additional groupings could theoretically be
unnecessary, but this is not implemented yet.) The column s.units does not have to be in the GROUP BY
list since it is only used in an aggregate expression (sum (. . .) ), which represents the sales of a product.
For each product, the query returns a summary row about all sales of the product.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this to
also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead of
simple column names is also allowed.

If a table has been grouped using a GROUP BY clause, but then only certain groups are of interest, the
HAVING clause can be used, much like a WHERE clause, to eliminate groups from a grouped table. The
syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;
x | sum

82



Chapter 7. Queries

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < 'c’;
x | sum

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) *x (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’'4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price % s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expression
is only true for sales during the last four weeks), while the HAVING clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
same in all parts of the query.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an intermediate
virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by the select list. The select list determines which columns of the intermediate
table are actually output.

7.3.1. Select-List ltems

The simplest kind of select list is « which emits all columns that the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it could
be a list of column names:

SELECT a, b, c FROM

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in the
select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same as in
the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in

SELECT tbll.a, tbl2.a, tbll.b FROM

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:

83



Chapter 7. Queries
SELECT tbll.*, tbl2.a FROM

(See also Section 7.2.2.)

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to the
returned table. The value expression is evaluated once for each result row, with the row’s values substituted
for any column references. But the expressions in the select list do not have to reference any columns in the
table expression of the FrROM clause; they could be constant arithmetic expressions as well, for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for further processing. The “further processing” in
this case is an optional sort specification and the client application (e.g., column headers for display). For
example:

SELECT a AS value, b + ¢ AS sum FROM

If no output column name is specified using AS, the system assigns a default name. For simple column
references, this is the name of the referenced column. For function calls, this is the name of the function.
For complex expressions, the system will generate a generic name.

Note: The naming of output columns here is different from that done in the From clause (see Section
7.2.1.2). This pipeline will in fact allow you to rename the same column twice, but the name chosen in
the select list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table may optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_1list

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DISTINCT ON (expression [, expression ...]) select_list

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON processing
occurs after ORDER BY sorting.)

84



Chapter 7. Queries

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subqueries in
FROM the construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

queryl UNION [ALL] query2
queryl INTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

queryl and query?2 are queries that can use any of the features discussed up to this point. Set operations
can also be nested and chained, for example

queryl UNION query2 UNION query3
which really says

(queryl UNION query2) UNION query3

UNION effectively appends the result of query2 to the result of query1 (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of query1 and in the result of query2. Duplicate
rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is sometimes
called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in that
case will depend on the scan and join plan types and the order on disk, but it must not be relied on. A
particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_list
FROM table expression

85



Chapter 7. Queries
ORDER BY columnl [ASC | DESC] [, column2 [ASC | DESC] ...]

columnl, etc., refer to select list columns. These can be either the output name of a column (see Section
7.3.2) or the number of a column. Some examples:

SELECT a, b FROM tablel ORDER BY a;
SELECT a + b AS sum, c¢c FROM tablel ORDER BY sum;
SELECT a, sum(b) FROM tablel GROUP BY a ORDER BY 1;

As an extension to the SQL standard, PostgreSQL also allows ordering by arbitrary expressions:
SELECT a, b FROM tablel ORDER BY a + b;

References to column names of the FROM clause that are not present in the select list are also allowed:
SELECT a FROM tablel ORDER BY b;

But these extensions do not work in queries involving UNION, INTERSECT, or EXCEPT, and are not

portable to other SQL databases.

Each column specification may be followed by an optional ASC or DESC to set the sort direction to ascend-
ing or descending. AsC order is the default. Ascending order puts smaller values first, where “smaller” is
defined in terms of the < operator. Similarly, descending order is determined with the > operator. '

If more than one sort column is specified, the later entries are used to sort rows that are equal under the
order imposed by the earlier sort columns.

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select_list
FROM table expression
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query itself
yields less rows). LIMIT ALL is the same as omitting the LIMIT clause.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as omitting
the OFFSET clause. If both OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to
count the LIMIT rows that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a unique
order. Otherwise you will get an unpredictable subset of the query’s rows. You may be asking for the tenth

1. Actually, PostgreSQL uses the default B-tree operator class for the column’s data type to determine the sort ordering for Asc
and DESC. Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined
data type’s designer could choose to do something different.

86



Chapter 7. Queries

through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown, unless
you specified ORDER BY.

The query optimizer takes LIMIT into account when generating a query plan, so you are very likely to get
different plans (yielding different row orders) depending on what you give for LIMIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular order
unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET can be inefficient.

87



Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users may add new types to PostgreSQL
using the CREATE TYPE command.

Table 8-1 shows all the built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition, some
internally used or deprecated types are available, but they are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [ (n) ] fixed-length bit string

bit varying [ (n) ] varbit variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box in the plane

bytea binary data (“byte array”)

character varying [ (n) varchar [ (n) ] variable-length character string

]

character [ (n) ] char [ (n) ] fixed-length character string

cidr IPv4 or IPv6 network address

circle circle in the plane

date calendar date (year, month, day)

double precision float8 double precision floating-point
number

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [ (p) ] time span

line infinite line in the plane

lseg line segment in the plane

macaddr MAC address

money currency amount

numeric [ (p, s) ] decimal [ (p, s) ] exact numeric of selectable
precision

path geometric path in the plane

point geometric point in the plane

polygon closed geometric path in the

plane

88




Chapter 8. Data Types

Name Aliases Description

real float4 single precision floating-point
number

smallint int2 signed two-byte integer

serial seriald autoincrementing four-byte
integer

text variable-length character string

time [ (p) 1 [ without time of day

time zone ]

time [ (p) ] with time timetz time of day, including time zone

zone

timestamp [ (p) 1 [ date and time

without time zone ]

timestamp [ (p) ] with timestamptz date and time, including time

time zone

zone

Compatibility: The following types (or spellings thereof) are specified by SQL: bit, bit varying,
boolean, char, character varying, character, varchar, date, double precision, integer,
interval, numeric, decimal, real, smallint, time (With or without time zone), t imestamp (with or

without time zone).

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possibilities for formats, such as the date and time types. Some
of the input and output functions are not invertible. That is, the result of an output function may lose
accuracy when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,
and selectable-precision decimals. Table 8-2 lists the available types.

Table 8-2. Numeric Types

Name Storage Size Description Range

smallint 2 bytes small-range integer -32768 to +32767

integer 4 bytes usual choice for integer |-2147483648 to
+2147483647

bigint 8 bytes large-range integer -9223372036854775808
to
9223372036854775807

89




Chapter 8. Data Types

Name Storage Size Description Range
decimal variable user-specified precision, |no limit
exact
numeric variable user-specified precision, | no limit
exact
real 4 bytes variable-precision, 6 decimal digits
inexact precision
double precision 8 bytes variable-precision, 15 decimal digits
inexact precision
serial 4 bytes autoincrementing 1 to 2147483647
integer
bigserial 8 bytes large autoincrementing |1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a full
set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information. The
following sections describe the types in detail.

8.1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the usual choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint type
should only be used if the integer range is not sufficient, because the latter is definitely faster.

The bigint type may not function correctly on all platforms, since it relies on compiler support for eight-
byte integers. On a machine without such support, bigint acts the same as integer (but still takes up
eight bytes of storage). However, we are not aware of any reasonable platform where this is actually the
case.

SQL only specifies the integer types integer (or int) and smallint. The type bigint, and the type
names int2, int4, and int 8 are extensions, which are shared with various other SQL database systems.

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with up to 1000 digits of precision and perform calculations ex-
actly. It is especially recommended for storing monetary amounts and other quantities where exactness is
required. However, arithmetic on numeric values is very slow compared to the integer types, or to the
floating-point types described in the next section.

In what follows we use these terms: The scale of a numeric is the count of decimal digits in the fractional
part, to the right of the decimal point. The precision of a numeric is the total count of significant digits in
the whole number, that is, the number of digits to both sides of the decimal point. So the number 23.5141
has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

90



Chapter 8. Data Types

Both the maximum precision and the maximum scale of a numeric column can be configured. To declare
a column of type numeric use the syntax

NUMERIC (precision, scale)

The precision must be positive, the scale zero or positive. Alternatively,
NUMERIC (precision)

selects a scale of 0. Specifying

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale can
be stored, up to the implementation limit on precision. A column of this kind will not coerce input values
to any particular scale, whereas numeric columns with a declared scale will coerce input values to that
scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. We find this a bit
useless. If you’re concerned about portability, always specify the precision and scale explicitly.)

If the scale of a value to be stored is greater than the declared scale of the column, the system will round
the value to the specified number of fractional digits. Then, if the number of digits to the left of the decimal
point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type is
more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each group
of four decimal digits, plus eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning “not-
a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in a SQL
command, you must put quotes around it, for example UPDATE table SET x = ’NaN’. On input, the
string NaN is recognized in a case-insensitive manner.

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

8.1.3. Floating-Point Types

The data types real and double precision are inexact, variable-precision numeric types. In practice,
these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arithmetic (sin-
gle and double precision, respectively), to the extent that the underlying processor, operating system, and
compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and printing back out a value may show slight discrepancies. Managing
these errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed further here, except for the following points:

« If you require exact storage and calculations (such as for monetary amounts), use the numeric type
instead.

91



Chapter 8. Data Types

« If you want to do complicated calculations with these types for anything important, especially if you
rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the implementation
carefully.

« Comparing two floating-point values for equality may or may not work as expected.

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. The double precision type typically has a range of around 1E-307 to 1E+308 with a
precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding may take
place if the precision of an input number is too high. Numbers too close to zero that are not representable
as distinct from zero will cause an underflow error.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
—Infinity
NaN

CLINNTS

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, respec-
tively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values will prob-
ably not work as expected.) When writing these values as constants in a SQL command, you must put
quotes around them, for example UPDATE table SET x = 'Infinity’. On input, these strings are
recognized in a case-insensitive manner.

PostgreSQL also supports the SQL-standard notations float and float (p) for specifying inexact nu-
meric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL accepts
float (1) to float (24) as selecting the real type, while float (25) to float (53) select double
precision. Values of p outside the allowed range draw an error. float with no precision specified is
taken to mean double precision.

Note: Prior to PostgreSQL 7.4, the precision in float (p) was taken to mean so many decimal digits.
This has been corrected to match the SQL standard, which specifies that the precision is measured
in binary digits. The assumption that real and double precision have exactly 24 and 53 bits in
the mantissa respectively is correct for IEEE-standard floating point implementations. On non-IEEE
platforms it may be off a little, but for simplicity the same ranges of p are used on all platforms.

8.1.4. Serial Types

The data types serial and bigserial are not true types, but merely a notational convenience for set-
ting up unique identifier columns (similar to the AUTO_INCREMENT property supported by some other
databases). In the current implementation, specifying

CREATE TABLE tablename (
colname SERIAL
)

is equivalent to specifying:

92



Chapter 8. Data Types

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename (

colname integer DEFAULT nextval (' tablename_colname_seq’) NOT NULL
)i

Thus, we have created an integer column and arranged for its default values to be assigned from a sequence
generator. A NOT NULL constraint is applied to ensure that a null value cannot be explicitly inserted, either.
In most cases you would also want to attach a UNTQUE or PRIMARY KEY constraint to prevent duplicate
values from being inserted by accident, but this is not automatic.

Note: Prior to PostgreSQL 7.3, serial implied unIQuE. This is no longer automatic. If you wish a
serial column to be in a unique constraint or a primary key, it must now be specified, same as with any
other data type.

To insert the next value of the sequence into the serial column, specify that the serial column should
be assigned its default value. This can be done either by excluding the column from the list of columns in
the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work just the same way, except that they create abigint column. bigserial
should be used if you anticipate the use of more than 2*' identifiers over the lifetime of the table.

The sequence created for a serial column is automatically dropped when the owning column is dropped,
and cannot be dropped otherwise. (This was not true in PostgreSQL releases before 7.3. Note that this
automatic drop linkage will not occur for a sequence created by reloading a dump from a pre-7.3 database;
the dump file does not contain the information needed to establish the dependency link.) Furthermore,
this dependency between sequence and column is made only for the serial column itself. If any other
columns reference the sequence (perhaps by manually calling the nextval function), they will be broken
if the sequence is removed. Using a serial column’s sequence in such a fashion is considered bad
form; if you wish to feed several columns from the same sequence generator, create the sequence as an
independent object.

8.2. Monetary Types

Note: The money type is deprecated. Use numeric Or decimal instead, in combination with the
to_char function.

The money type stores a currency amount with a fixed fractional precision; see Table 8-3. Input is ac-
cepted in a variety of formats, including integer and floating-point literals, as well as “typical” currency
formatting, such as 7 $1, 000.00’. Output is generally in the latter form but depends on the locale.

Table 8-3. Monetary Types

Name ‘ Storage Size Description Range

93



Chapter 8. Data Types

Name Storage Size Description Range
money 4 bytes currency amount -21474836.48 to
+21474836.47

8.3. Character Types

Table 8-4. Character Types

Name Description

character varying(n), varchar (n) variable-length with limit
character (n), char (n) fixed-length, blank padded
text variable unlimited length

Table 8-4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character (n), where nis a
positive integer. Both of these types can store strings up to n characters in length. An attempt to store a
longer string into a column of these types will result in an error, unless the excess characters are all spaces,
in which case the string will be truncated to the maximum length. (This somewhat bizarre exception is
required by the SQL standard.) If the string to be stored is shorter than the declared length, values of type
character will be space-padded; values of type character varying will simply store the shorter
string.

If one explicitly casts a value to character varying (n) or character (n), then an over-length value
will be truncated to n characters without raising an error. (This too is required by the SQL standard.)

Note: Prior to PostgreSQL 7.2, strings that were too long were always truncated without raising an
error, in either explicit or implicit casting contexts.

The notations varchar (n) and char (n) are aliases for character varying(n) and character (n),
respectively. character without length specifier is equivalent to character(l). If character
varying is used without length specifier, the type accepts strings of any size. The latter is a PostgreSQL
extension.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the type
text is not in the SQL standard, several other SQL database management systems have it as well.

Values of type character are physically padded with spaces to the specified width n, and are stored
and displayed that way. However, the padding spaces are treated as semantically insignificant. Trailing
spaces are disregarded when comparing two values of type character, and they will be removed when
converting a character value to one of the other string types. Note that trailing spaces are semantically
significant in character varying and text values.

The storage requirement for data of these types is 4 bytes plus the actual string, and in case of character
plus the padding. Long strings are compressed by the system automatically, so the physical requirement
on disk may be less. Long values are also stored in background tables so they do not interfere with rapid

94




Chapter 8. Data Types

access to the shorter column values. In any case, the longest possible character string that can be stored
is about 1 GB. (The maximum value that will be allowed for n in the data type declaration is less than
that. It wouldn’t be very useful to change this because with multibyte character encodings the number of
characters and bytes can be quite different anyway. If you desire to store long strings with no specific upper
limit, use text or character varying without a length specifier, rather than making up an arbitrary
length limit.)

Tip: There are no performance differences between these three types, apart from the increased stor-
age size when using the blank-padded type. While character (n) has performance advantages in
some other database systems, it has no such advantages in PostgreSQL. In most situations text or
character varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for information
about available operators and functions. The database character set determines the character set used to
store textual values; for more information on character set support, refer to Section 21.2.

Example 8-1. Using the character types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES ('ok’);

SELECT a, char_length(a) FROM testl; —- ©
a | char_length
______ T,
ok | 2

CREATE TABLE test2 (b varchar(5));

INSERT INTO test2 VALUES ('ok’);

INSERT INTO test2 VALUES (’good ")

INSERT INTO test2 VALUES (’too long’);

ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES (’'too long’::varchar(5)); —-- explicit truncation
SELECT b, char_length(b) FROM test2;
b | char_length
_______ e
ok | 2
good | 5
too 1 | 5

©® The char_length function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8-5. The name type exists
only for storage of identifiers in the internal system catalogs and is not intended for use by the general user.
Its length is currently defined as 64 bytes (63 usable characters plus terminator) but should be referenced
using the constant NAMEDATALEN. The length is set at compile time (and is therefore adjustable for special
uses); the default maximum length may change in a future release. The type "char" (note the quotes) is
different from char (1) in that it only uses one byte of storage. It is internally used in the system catalogs
as a poor-man’s enumeration type.

95



Chapter 8. Data Types

Table 8-5. Special Character Types

Name Storage Size Description
"char" 1 byte single-character internal type
name 64 bytes internal type for object names

8.4. Binary Data Types

The bytea data type allows storage of binary strings; see Table 8-6.

Table 8-6. Binary Data Types

Name Storage Size Description
bytea 4 bytes plus the actual binary variable-length binary string
string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
by two characteristics: First, binary strings specifically allow storing octets of value zero and other “non-
printable” octets (usually, octets outside the range 32 to 126). Character strings disallow zero octets,
and also disallow any other octet values and sequences of octet values that are invalid according to the
database’s selected character set encoding. Second, operations on binary strings process the actual bytes,
whereas the processing of character strings depends on locale settings. In short, binary strings are ap-
propriate for storing data that the programmer thinks of as “raw bytes”, whereas character strings are
appropriate for storing text.

When entering bytea values, octets of certain values must be escaped (but all octet values can be escaped)
when used as part of a string literal in an SQL statement. In general, to escape an octet, it is converted into
the three-digit octal number equivalent of its decimal octet value, and preceded by two backslashes. Table
8-7 shows the characters that must be escaped, and gives the alternate escape sequences where applicable.

Table 8-7. bytea Literal Escaped Octets

Decimal Octet |Description Escaped Input | Example Output
Value Representation Representation
0 zero octet "\\000" SELECT \000

"\\000’ : :bytea;

39 single quote "\"” or " \\047’ SELECT '
"\"::bytea;
92 backslash "\\\\’ or SELECT A\
"\\134’ "N\\\' : :bytea;
0to 31 and 127 to | “non-printable” "\\xxx’ (octal SELECT \001
255 octets value) "\\001’ : :bytea;

The requirement to escape “non-printable” octets actually varies depending on locale settings. In some

96



Chapter 8. Data Types

instances you can get away with leaving them unescaped. Note that the result in each of the examples
in Table 8-7 was exactly one octet in length, even though the output representation of the zero octet and
backslash are more than one character.

The reason that you have to write so many backslashes, as shown in Table 8-7, is that an input string written
as a string literal must pass through two parse phases in the PostgreSQL server. The first backslash of each
pair is interpreted as an escape character by the string-literal parser and is therefore consumed, leaving the
second backslash of the pair. The remaining backslash is then recognized by the bytea input function as
starting either a three digit octal value or escaping another backslash. For example, a string literal passed
to the server as * \\001’ becomes \001 after passing through the string-literal parser. The \ 001 is then
sent to the bytea input function, where it is converted to a single octet with a decimal value of 1. Note
that the apostrophe character is not treated specially by bytea, so it follows the normal rules for string
literals. (See also Section 4.1.2.1.)

Bytea octets are also escaped in the output. In general, each “non-printable” octet is converted into its
equivalent three-digit octal value and preceded by one backslash. Most “printable” octets are represented
by their standard representation in the client character set. The octet with decimal value 92 (backslash)
has a special alternative output representation. Details are in Table 8-8.

Table 8-8. bytea Output Escaped Octets

Decimal Octet | Description Escaped Output | Example Output Result
Value Representation
92 backslash AN\ SELECT \\

"\\134’ ::bytea;

0to 31 and 127 to | “non-printable” \xxx (octal value) |SELECT \001

255 octets \\001’ : :bytea;

32t0 126 “printable” octets | client character set | SELECT ~
representation "\\176" : :bytea;

Depending on the front end to PostgreSQL you use, you may have additional work to do in terms of
escaping and unescaping bytea strings. For example, you may also have to escape line feeds and carriage
returns if your interface automatically translates these.

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT. The
input format is different from bytea, but the provided functions and operators are mostly the same.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8-9. The operations available
on these data types are described in Section 9.9.

Table 8-9. Date/Time Types

Name Storage Size |Description |Low Value High Value Resolution

97



Chapter 8. Data Types

zone

] with time

only, with time
zone

Name Storage Size |Description |Low Value High Value Resolution
timestamp [ |8 bytes both date and |4713 BC 5874897 AD 1 microsecond /
(p) 1 1 time 14 digits
without

time zone ]

timestamp [ |8 bytes both date and |4713 BC 5874897 AD 1 microsecond /
(p) 1 with time, with time 14 digits

time zone zone

interval [ 12 bytes time intervals | -178000000 178000000 1 microsecond /
(p) 1 years years 14 digits

date 4 bytes dates only 4713 BC 32767 AD 1 day

time [ (p) 8 bytes times of day 00:00:00 24:00:00 1 microsecond /
] [ without only 14 digits

time zone ]

time [ (p) 12 bytes times of day 00:00:00+1359 |24:00:00-1359 |1 microsecond /

14 digits

Note: Prior to PostgreSQL 7.3, writing just timestamp was equivalent 10 timestamp with time
zone. This was changed for SQL compliance.

time, timestamp, and interval accept an optional precision value p which specifies the number of
fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p is from 0 to 6 for the t imestamp and interval types.

Note: When timestamp values are stored as double precision floating-point numbers (currently the
default), the effective limit of precision may be less than 6. t imestamp values are stored as seconds
before or after midnight 2000-01-01. Microsecond precision is achieved for dates within a few years of
2000-01-01, but the precision degrades for dates further away. When timestamp values are stored as
eight-byte integers (a compile-time option), microsecond precision is available over the full range of
values. However eight-byte integer timestamps have a more limited range of dates than shown above:
from 4713 BC up to 294276 AD. The same compile-time option also determines whether time and
interval values are stored as floating-point or eight-byte integers. In the floating-point case, large
interval values degrade in precision as the size of the interval increases.

For the t ime types, the allowed range of p is from 0 to 6 when eight-byte integer storage is used, or from
0 to 10 when floating-point storage is used.

The type time with time zone is defined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combination of date, time, timestamp
without time zone, and timestamp with time zone should provide a complete range of
date/time functionality required by any application.

The types abstime and reltime are lower precision types which are used internally. You are discour-

aged from using these types in new applications and are encouraged to move any old ones over when

appropriate. Any or all of these internal types might disappear in a future release.

98




Chapter 8. Data Types

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of month, day, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, DMY to select day-month-year interpretation, or
¥YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days of
the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings. Refer
to Section 4.1.2.5 for more information. SQL requires the following syntax

type [ (p) 1 "value’

where p in the optional precision specification is an integer corresponding to the number of fractional
digits in the seconds field. Precision can be specified for time, timestamp, and interval types. The
allowed values are mentioned above. If no precision is specified in a constant specification, it defaults to
the precision of the literal value.

8.5.1.1. Dates

Table 8-10 shows some possible inputs for the date type.

Table 8-10. Date Input

Example Description

January 8, 1999 unambiguous in any datestyle input mode

1999-01-08 ISO 8601; January 8 in any mode (recommended
format)

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in
pMY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 year and day of year

J2451187 Julian day

99



Chapter 8. Data Types

Example Description

January 8, 99 BC year 99 before the Common Era

8.5.1.2. Times

The time-of-day types are time [ (p) ] without time zone and time [ (p) ] with time
zone. Writing just t ime is equivalent to time without time zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8-11
and Table 8-12.) If a time zone is specified in the input for time without time zone, it is silently
ignored.

Table 8-11. Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12
04:05:06.789-8 ISO 8601

04:05:06-08:00 I1SO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by name

Table 8-12. Time Zone Input

Example Description

PST Pacific Standard Time

-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC
z Short form of zulu

Refer to Appendix B for a list of time zone names that are recognized for input.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of a concatenation of a date and a time, followed by an
optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the time

100




Chapter 8. Data Types

zone, but this is not the preferred ordering.) Thus
1999-01-08 04:05:06
and

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the wide-spread format

January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiates timestamp without time zone and timestamp with time
zone literals by the presence of a “+” or “-”. Hence, according to the standard,

TIMESTAMP "2004-10-19 10:23:54"
isatimestamp without time zone, while
TIMESTAMP '2004-10-19 10:23:54+02'

is a timestamp with time zone. PostgreSQL never examines the content of a literal string before
determining its type, and therefore will treat both of the above as t imestamp without time zone.To
ensure that a literal is treated as timestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE ’2004-10-19 10:23:54+02'

In a literal that has been decided to be timestamp without time zone, PostgreSQL will silently
ignore any time zone indication. That is, the resulting value is derived from the date/time fields in the
input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordinated
Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit time zone
specified is converted to UTC using the appropriate offset for that time zone. If no time zone is stated in
the input string, then it is assumed to be in the time zone indicated by the system’s timezone parameter,
and is converted to UTC using the offset for the t imezone zone.

When a timestamp with time zone value is output, it is always converted from UTC to the current
timezone zone, and displayed as local time in that zone. To see the time in another time zone, either
change timezone or use the AT TIME ZONE construct (see Section 9.9.3).

Conversions between t imestamp without time zone and timestamp with time zone normally
assume that the timestamp without time zone value should be taken or given as timezone local
time. A different zone reference can be specified for the conversion using AT TIME ZONE.

8.5.1.4. Intervals

interval values can be written with the following syntax:

[@] quantity unit [quantity unit...] [direction]

101



Chapter 8. Data Types

Where: quantity is a number (possibly signed); unit is second, minute, hour, day, week, month,
year, decade, century, millennium, or abbreviations or plurals of these units; direction can be
ago or empty. The at sign (@) is optional noise. The amounts of different units are implicitly added up
with appropriate sign accounting.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For ex-
ample, 71 12:59:10’ isread the sameas 1 day 12 hours 59 min 10 sec’.

The optional precision p should be between 0 and 6, and defaults to the precision of the input literal.

8.5.1.5. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8-13. The
values infinity and —-infinity are specially represented inside the system and will be displayed the
same way; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read. (In particular, now and related strings are converted to a specific time value as soon
as they are read.) All of these values need to be written in single quotes when used as constants in SQL
commands.

Table 8-13. Special Date/Time Inputs

Input String Valid Types Description
epoch date, timestamp 1970-01-01 00:0:
system time zero
infinity timestamp later than all othe
—infinity timestamp earlier than all ot
now date, time, timestamp current transactic
today date, timestamp midnight today
tomorrow date, timestamp midnight tomorr
yesterday date, timestamp midnight yesterd
allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
rocaLTIMESTAMP. The latter four accept an optional precision specification. (See Section 9.9.4.) Note
however that these are SQL functions and are not recognized as data input strings.

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres), tra-
ditional POSTGRES, and German, using the command SET datestyle. The default is the ISO format.
(The SQL standard requires the use of the ISO 8601 format. The name of the “SQL” output format is a
historical accident.) Table 8-14 shows examples of each output style. The output of the date and time
types is of course only the date or time part in accordance with the given examples.

102



Chapter 8. Data Types

Table 8-14. Date/Time Output Styles

Style Specification Description Example

ISO ISO 8601/SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST
POSTGRES original style Wed Dec 17 07:37:16 1997 PST
German regional style 17.12.1997 07:37:16.00 PST

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,
otherwise month appears before day. (See Section 8.5.1 for how this setting also affects interpretation of
input values.) Table 8-15 shows an example.

Table 8-15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day/monthlyear 17/12/1997 15:37:16.00 CET
SQL, MDY monthl/daylyear 12/17/1997 07:37:16.00 PST
Postgres, DMY day/monthlyear Wed 17 Dec 07:37:16 1997 PST

interval output looks like the input format, except that units like century or week are converted to
years and days and ago is converted to an appropriate sign. In ISO mode the output looks like

[ quantity unit [ ... ] 1 [ days ] [ hours:minutes:seconds ]

The date/time styles can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresqgl.conf configuration file, or the PGDATESTYLE environment variable on
the server or client. The formatting function to_char (see Section 9.8) is also available as a more flexible
way to format the date/time output.

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900’s, but continue to be prone
to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL currently supports
daylight-savings rules over the time period 1902 through 2038 (corresponding to the full range of conven-
tional Unix system time). Times outside that range are taken to be in “standard time” for the selected time
zone, no matter what part of the year they fall in.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

+ Although the date type does not have an associated time zone, the t ime type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset may vary
through the year with daylight-saving time boundaries.

103




Chapter 8. Data Types

+ The default time zone is specified as a constant numeric offset from UTC. It is therefore not possible to
adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We recommend not using the type time with time zone (though it is supported
by PostgreSQL for legacy applications and for compliance with the SQL standard). PostgreSQL assumes
your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in the
zone specified by the timezone configuration parameter before being displayed to the client.

The timezone configuration parameter can be set in the file postgresqgl.conf, or in any of the other
standard ways described in Chapter 17. There are also several special ways to set it:

« If timezone is not specified in postgresgl.conf nor as a postmaster command-line switch, the
server attempts to use the value of the Tz environment variable as the default time zone. If Tz is not
defined or is not any of the time zone names known to PostgreSQL, the server attempts to determine the
operating system’s default time zone by checking the behavior of the C library function 1ocaltime ().
The default time zone is selected as the closest match among PostgreSQL’s known time zones.

+ The SQL command SET TIME ZzONE sets the time zone for the session. This is an alternative spelling
of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

« The PGTZ environment variable, if set at the client, is used by libpq applications to send a SET TIME
ZONE command to the server upon connection.

Refer to Appendix B for a list of available time zones.

8.5.4. Internals

PostgreSQL uses Julian dates for all date/time calculations. They have the nice property of correctly
predicting/calculating any date more recent than 4713 BC to far into the future, using the assumption that
the length of the year is 365.2425 days.

Date conventions before the 19th century make for interesting reading, but are not consistent enough to
warrant coding into a date/time handler.

8.6. Boolean Type

PostgreSQL provides the standard SQL type boolean. boolean can have one of only two states: “true
or “false”. A third state, “unknown”, is represented by the SQL null value.

L2

Valid literal values for the “true” state are:
TRUE

e

"true’

104



Chapter 8. Data Types

ryr
ryesl
rr

For the “false” state, the following values can be used:

FALSE
!f!
"false’
Inf
Inol

ror

Using the key words TRUE and FALSE is preferred (and SQL-compliant).

Example 8-2. Using the boolean type

CREATE TABLE testl (a boolean, b text);
INSERT INTO testl VALUES (TRUE, ’'sic est’);
INSERT INTO testl VALUES (FALSE, ’'non est’);
SELECT = FROM testl;

a | b

Example 8-2 shows that boolean values are output using the letters t and £.

Tip: Values of the boolean type cannot be cast directly to other types (e.g., CAST (boolval AS
integer) does not work). This can be accomplished using the case expression: CASE WHEN boolval
THEN ’value if true’ ELSE ’‘value if false’ END. See Section 9.13.

boolean uses 1 byte of storage.

8.7. Geometric Types

Geometric data types represent two-dimensional spatial objects. Table 8-16 shows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other types.

105



Chapter 8. Data Types

Name ‘ Storage Size Representation Description
Table 8-16. Geometric Types

Name Storage Size Representation Description

point 16 bytes Point on the plane (x,y)

line 32 bytes Infinite line (not fully ((x1,y1),(x2,y2))
implemented)

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to | ((x1,y1),...)
polygon)

path 16+16n bytes Open path [(xL,yD),...]

polygon 40+16n bytes Polygon (similar to (x1,ylD),...)
closed path)

circle 24 bytes Circle <(x,y),r> (center and

radius)

A rich set of functions and operators is available to perform various geometric operations such as scaling,
translation, rotation, and determining intersections. They are explained in Section 9.10.

8.7.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values of type point are
specified using the following syntax:

(x, v)
X 5 Y

where x and y are the respective coordinates as floating-point numbers.

8.7.2. Line Segments

Line segments (1seg) are represented by pairs of points. Values of type 1seg are specified using the
following syntax:

( (x>, y1) , (x2, y2) )
(x1 , y1) , (x2, y2)

x1 , yl , x2 , y2

where (x1,y1) and (x2, y2) are the end points of the line segment.

106



Chapter 8. Data Types

8.7.3. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using the following syntax:

( (x1, y1) , (%2, y2) )
(x1 , y1) , (x2, y2)
x1 , yl , x2 , y2

where (x1,y1) and (x2, y2) are any two opposite corners of the box.

Boxes are output using the first syntax. The corners are reordered on input to store the upper right corner,
then the lower left corner. Other corners of the box can be entered, but the lower left and upper right
corners are determined from the input and stored.

8.7.4. Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last points in the
list are not considered connected, or closed, where the first and last points are considered connected.

Values of type path are specified using the following syntax:

( (x1, y1) , «o. , (xn , yn ) )
[ ( x1 , y1 ) , «.. , ( xn , yn ) 1
(x1 , y1 ) , «.. , ( xn , yn)

( x1 , yl1 ;e xn , yn )
x1 , yl ;e g xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([ ]) indicate
an open path, while parentheses ( () ) indicate a closed path.

Paths are output using the first syntax.

8.7.5. Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons should probably be
considered equivalent to closed paths, but are stored differently and have their own set of support routines.

Values of type polygon are specified using the following syntax:

( (x1, y1) , «o. , (xn , yn ) )
(x1 , v1 ) , «.. , ( xn , yn )
( x1 , yl ;e xn , yn )
x1 , yl ;e g xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

107



Chapter 8. Data Types

8.7.6. Circles

Circles are represented by a center point and a radius. Values of type circle are specified using the
following syntax:

>

< v r

r Yy ) o, )
Vv r
Yy r

((
(

where (x, y) is the center and r is the radius of the circle.

Circles are output using the first syntax.

8.8. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8-17. It is
preferable to use these types instead of plain text types to store network addresses, because these types
offer input error checking and several specialized operators and functions (see Section 9.11).

Table 8-17. Network Address Types

Name Storage Size Description

cidr 12 or 24 bytes IPv4 and IPv6 networks

inet 12 or 24 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, including
IPv4 addresses encapsulated or mapped into IPv6 addresses, such as ::10.2.3.4 or ::ffff::10.4.3.2.

8.8.1. inet

The inet type holds an IPv4 or IPv6 host address, and optionally the identity of the subnet it is in, all
in one field. The subnet identity is represented by stating how many bits of the host address represent the
network address (the “netmask™). If the netmask is 32 and the address is IPv4, then the value does not
indicate a subnet, only a single host. In IPv6, the address length is 128 bits, so 128 bits specify a unique
host address. Note that if you want to accept networks only, you should use the cidr type rather than

inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the
number of bits in the netmask. If the /y part is left off, then the netmask is 32 for IPv4 and 128 for IPv6,
so the value represents just a single host. On display, the /y portion is suppressed if the netmask specifies

a single host.

108



8.8.2. cidr

Chapter 8. Data Types

The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying networks is address/y where address
is the network represented as an IPv4 or IPv6 address, and y is the number of bits in the netmask. If y is
omitted, it is calculated using assumptions from the older classful network numbering system, except that
it will be at least large enough to include all of the octets written in the input. It is an error to specify a
network address that has bits set to the right of the specified netmask.

Table 8-18 shows some examples.

Table 8-18. cidr Type Input Examples

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24
128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16
128.1.2 128.1.2.0/24 128.1.2/24
10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8
10.1.2.3/32 10.1.2.3/32 10.1.2.3/32

2001:418:3:ba::/64

2001:418:3:ba::/64

2001:418:3:ba::/64

2001:418:3:ba:2e0:81{f:fe22:d1f1

12@01:418:3:ba:2e0:811f:fe22:d1f1

12801:418:3:ba:2e0:811f:fe22:d1f1

:offff:1.2.3.0/120

=ffff:1.2.3.0/120

=ffff:1.2.3/120

:offff:1.2.3.0/128

=ffff:1.2.3.0/128

=ffff:1.2.3.0/128

8.8.3. inet VS. cidr

The essential difference between inet and cidr data types is that inet accepts values with nonzero bits
to the right of the netmask, whereas cidr does not.

Tip: If you do not like the output format for inet or cidr values, try the functions host, text, and

abbrev.

109




Chapter 8. Data Types

8.8.4. macaddr

The macaddr type stores MAC addresses, i.e., Ethernet card hardware addresses (although MAC ad-
dresses are used for other purposes as well). Input is accepted in various customary formats, including

708002b:010203"
708002b-010203"
70800.2b01.0203"
"08-00-2b-01-02-03"
708:00:2b:01:02:03"

which would all specify the same address. Upper and lower case is accepted for the digits a through f.
Output is always in the last of the forms shown.

The directory cont rib/mac in the PostgreSQL source distribution contains tools that can be used to map
MAC addresses to hardware manufacturer names.

8.9. Bit String Types

Bit strings are strings of 1’s and 0’s. They can be used to store or visualize bit masks. There are two SQL
bit types: bit (n) and bit varying (n), where n is a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bit without a length is equivalent to bit (1), while bit varying without a length
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit (n), it will be truncated or zero-padded on the right
to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value to bit
varying (n), it will be truncated on the right if it is more than n bits.

Note: Prior to PostgreSQL 7.2, bit data was always silently truncated or zero-padded on the right,
with or without an explicit cast. This was changed to comply with the SQL standard.

Refer to Section 4.1.2.3 for information about the syntax of bit string constants. Bit-logical operators and
string manipulation functions are available; see Section 9.6.

Example 8-3. Using the bit string types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B’101’, B’'00");

INSERT INTO test VALUES (B’10’, B’"1017);

ERROR: Dbit string length 2 does not match type bit (3)
INSERT INTO test VALUES (B’10’'::bit(3), B’101");
SELECT » FROM test;

110



Chapter 8. Data Types

a | b
,,,,, P
101 | 00
100 | 101

8.10. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Arrays of
any built-in or user-defined base type can be created. (Arrays of composite types or domains are not yet
supported, however.)

8.10.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (
name text,
pay_by_qgquarter integer|[],
schedule text[][]
)i

As shown, an array data type is named by appending square brackets ([]) to the data type name of the
array elements. The above command will create a table named sal_emp with a column of type text
(name), a one-dimensional array of type integer (pay_by_quarter), which represents the employee’s
salary by quarter, and a two-dimensional array of text (schedule), which represents the employee’s
weekly schedule.

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer[3][3]

)i
However, the current implementation does not enforce the array size limits — the behavior is the same as
for arrays of unspecified length.

Actually, the current implementation does not enforce the declared number of dimensions either. Arrays
of a particular element type are all considered to be of the same type, regardless of size or number of
dimensions. So, declaring number of dimensions or sizes in CREATE TABLE is simply documentation, it
does not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard, may be used for one-dimensional arrays.
pay_by_quarter could have been defined as:

pay_by_quarter integer ARRAY[4],

This syntax requires an integer constant to denote the array size. As before, however, PostgreSQL does
not enforce the size restriction.

111



Chapter 8. Data Types

8.10.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and separate
them by commas. (If you know C, this is not unlike the C syntax for initializing structures.) You may put
double quotes around any element value, and must do so if it contains commas or curly braces. (More
details appear below.) Thus, the general format of an array constant is the following:

"{ vall delim val2 delim ... }'

where delimis the delimiter character for the type, as recorded in its pg_t ype entry. Among the standard
data types provided in the PostgreSQL distribution, type box uses a semicolon (; ) but all the others use
comma (, ). Each va1 is either a constant of the array element type, or a subarray. An example of an array
constant is

"{{1,2,3},{4,5,6},{7,8,9}}’

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.5. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some INSERT statements.

INSERT INTO sal_emp
VALUES (’Bill’,
{10000, 10000, 10000, 10000},
"{{"meeting", "lunch"}, {"meeting"}}’);
ERROR: multidimensional arrays must have array expressions with matching dimensions

Note that multidimensional arrays must have matching extents for each dimension. A mismatch causes an
€rror report.

INSERT INTO sal_emp
VALUES (’Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"training", "presentation"}}’);

INSERT INTO sal_emp
VALUES (’Carol’,
{20000, 25000, 25000, 25000}",
"{{"breakfast", "consulting"}, {"meeting", "lunch"}}’);

A limitation of the present array implementation is that individual elements of an array cannot be SQL
null values. The entire array can be set to null, but you can’t have an array with some elements null and
some not. (This is likely to change in the future.)

The result of the previous two inserts looks like this:
SELECT % FROM sal_emp;
name | pay_by_qguarter | schedule

_______ +___________________________+___________________________________________
Bill | {10000,10000,10000,10000} | {{meeting,lunch}, {training,presentation}}

112



Chapter 8. Data Types

Carol | {20000,25000,25000,25000} | {{breakfast,consulting}, {meeting,lunch}}
(2 rows)

The ARRAY constructor syntax may also be used:

INSERT INTO sal_emp
VALUES (’Bill’,
ARRAY[10000, 10000, 10000, 100001,
ARRAY [ ['meeting’, ’'lunch’], [’training’, ’presentation’]]);

INSERT INTO sal_emp
VALUES (’'Carol’,
ARRAY[20000, 25000, 25000, 250007,
ARRAY [ ['breakfast’, ’consulting’], ['meeting’, ’'lunch’]]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals are
single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor syntax
is discussed in more detail in Section 4.2.10.

8.10.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array at
a time. This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_quarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses the one-
based numbering convention for arrays, that is, an array of n elements starts with array[1] and ends
with array [n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by_qgquarter[3] FROM sal_emp;

pay_by_qguarter

10000
25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted by
writing 1ower-bound: upper-bound for one or more array dimensions. For example, this query retrieves
the first item on Bill’s schedule for the first two days of the week:

113



Chapter 8. Data Types
SELECT schedule[1:2]([1:1] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting}, {training}}
(1 row)

‘We could also have written

SELECT schedule[1:2][1] FROM sal_emp WHERE name = ’'Bill’;

with the same result. An array subscripting operation is always taken to represent an array slice if any
of the subscripts are written in the form 1ower: upper. A lower bound of 1 is assumed for any subscript
where only one value is specified, as in this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting, lunch}, {training, presentation}}
(1 row)

Fetching from outside the current bounds of an array yields a SQL null value, not an error. For example, if
schedule currently has the dimensions [1:3] [1:2] then referencing schedule[3] [3] yields NULL.
Similarly, an array reference with the wrong number of subscripts yields a null rather than an error.
Fetching an array slice that is completely outside the current bounds likewise yields a null array; but
if the requested slice partially overlaps the array bounds, then it is silently reduced to just the overlapping
region.

The current dimensions of any array value can be retrieved with the array_dims function:

SELECT array_dims (schedule) FROM sal_emp WHERE name = ’'Carol’;

array_dims

[1:2]1[1:1]
(1 row)

array_dims produces a text result, which is convenient for people to read but perhaps not so convenient
for programs. Dimensions can also be retrieved with array_upper and array_lower, which return the
upper and lower bound of a specified array dimension, respectively.

SELECT array_upper (schedule, 1) FROM sal_emp WHERE name = ’Carol’;

array_upper

114



Chapter 8. Data Types

8.10.4. Modifying Arrays
An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = ' {25000,25000,27000,27000}"
WHERE name = ’'Carol’;

or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
WHERE name = ’Carol’;

An array may also be updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
WHERE name = ’'Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[l:2] = ’{27000,27000}"
WHERE name = ’'Carol’;

A stored array value can be enlarged by assigning to an element adjacent to those already present, or by
assigning to a slice that is adjacent to or overlaps the data already present. For example, if array myarray
currently has 4 elements, it will have five elements after an update that assigns to myarray [5]. Currently,
enlargement in this fashion is only allowed for one-dimensional arrays, not multidimensional arrays.

Array slice assignment allows creation of arrays that do not use one-based subscripts. For example one
might assign to myarray [-2:7] to create an array with subscript values running from -2 to 7.

New array values can also be constructed by using the concatenation operator, | |.

SELECT ARRAY[1,2] || ARRAY[3,4];
?column?

{1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY[[1,21,(3,41]1;

?column?

{{5,6},{1,2},1{3,4}}
(1 row)

The concatenation operator allows a single element to be pushed on to the beginning or end of a one-
dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-dimensional
array.

When a single element is pushed on to the beginning of a one-dimensional array, the result is an array
with a lower bound subscript equal to the right-hand operand’s lower bound subscript, minus one. When

115



Chapter 8. Data Types

a single element is pushed on to the end of a one-dimensional array, the result is an array retaining the
lower bound of the left-hand operand. For example:

SELECT array_dims (1l || ARRAY[2,3]);
array_dims

[0:2]
(1 row)

SELECT array_dims (ARRAY[1,2] || 3);
array_dims

[1:3]
(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower bound
subscript of the left-hand operand’s outer dimension. The result is an array comprising every element of
the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[3,4,5]);
array_dims

[1:5]
(1 row)

SELECT array_dims (ARRAY[[1,2],13,4]1]1 || ARRAY[[5,6]1,17,81,19,011);
array_dims

[1:5]1[1:2]
(1 row)

When an N-dimensional array is pushed on to the beginning or end of an N+1-dimensional array, the result
is analogous to the element-array case above. Each nN-dimensional sub-array is essentially an element of
the N+1-dimensional array’s outer dimension. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[[3,41,([5,61]1);
array_dims

[0:2][1:2]
(1 row)

An array can also be constructed by using the functions array prepend, array_append,
or array_cat. The first two only support one-dimensional arrays, but array_cat supports
multidimensional arrays. Note that the concatenation operator discussed above is preferred over direct
use of these functions. In fact, the functions are primarily for use in implementing the concatenation
operator. However, they may be directly useful in the creation of user-defined aggregates. Some
examples:

116



SELECT array_prepend(l, ARRAY[2,3]);
array_prepend

{1,2,3}
(1 row)

SELECT array_append (ARRAY[1,2], 3);
array_append

{1,2,3}
(1 row)

SELECT array_cat (ARRAY[1,2], ARRAY[3,4]);
array_cat

{1,2,3,4}
(1 row)

Chapter 8. Data Types

SELECT array_cat (ARRAY[[1,2],[3,4]], ARRAY[5,6]);

array_cat

{{1,2},{3,4},{5,6}}
(1 row)

SELECT array_cat (ARRAY[5,6], ARRAY[[1,2],1[3,411);

array_cat

{{5,6},{1,2},{3,4}}

8.10.5. Searching in Arrays

To search for a value in an array, you must check each value of the array. This can be done by hand, if you

know the size of the array. For example:

SELECT % FROM sal_emp WHERE pay_by_quarter|[
pay_by_quarter|
pay_by_quarter|

[

1
2
3
pay_by_quarter[4

]
]
]
]

10000 OR
10000 OR
10000 OR
10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
uncertain. An alternative method is described in Section 9.17. The above query could be replaced by:

SELECT % FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);

In addition, you could find rows where the array had all values equal to 10000 with:

SELECT » FROM sal_emp WHERE 10000 = ALL (pay_by_dquarter);

117



Chapter 8. Data Types

Tip: Arrays are not sets; searching for specific array elements may be a sign of database misdesign.
Consider using a separate table with a row for each item that would be an array element. This will be
easier to search, and is likely to scale up better to large numbers of elements.

8.10.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array’s element type, plus decoration that indicates the array structure. The
decoration consists of curly braces ({ and }) around the array value plus delimiter characters between
adjacent items. The delimiter character is usually a comma (, ) but can be something else: it is determined
by the typdelim setting for the array’s element type. (Among the standard data types provided in the
PostgreSQL distribution, type box uses a semicolon (; ) but all the others use comma.) In a multidimen-
sional array, each dimension (row, plane, cube, etc.) gets its own level of curly braces, and delimiters must
be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element values if they are empty strings or contain
curly braces, delimiter characters, double quotes, backslashes, or white space. Double quotes and back-
slashes embedded in element values will be backslash-escaped. For numeric data types it is safe to assume
that double quotes will never appear, but for textual data types one should be prepared to cope with either
presence or absence of quotes. (This is a change in behavior from pre-7.2 PostgreSQL releases.)

By default, the lower bound index value of an array’s dimensions is set to one. If any of an array’s
dimensions has a lower bound index not equal to one, an additional decoration that indicates the actual
array dimensions will precede the array structure decoration. This decoration consists of square brackets
([1) around each array dimension’s lower and upper bounds, with a colon (:) delimiter character in
between. The array dimension decoration is followed by an equal sign (=). For example:

SELECT 1 || ARRAY[2,3] AS array;

[0:2]={1,2,3}
(1 row)

SELECT ARRAY[1,2] || ARRAY[[3,4]] AS array;

[0:1]1[1:2]1={{1,2},{3,4}}
(1 row)

This syntax can also be used to specify non-default array subscripts in an array literal. For example:

SELECT f1[1]([-2][3] AS el, f1[1][-1][5] AS e2
FROM (SELECT ' [1:1]1[-2:-1]1[3:5]1={{{1,2,3},{4,5,6}}}"::int[] AS fl) AS ss;

118



Chapter 8. Data Types

1] 6
(1 row)

As shown previously, when writing an array value you may write double quotes around any individual ar-
ray element. You must do so if the element value would otherwise confuse the array-value parser. For ex-
ample, elements containing curly braces, commas (or whatever the delimiter character is), double quotes,
backslashes, or leading or trailing whitespace must be double-quoted. To put a double quote or backslash
in a quoted array element value, precede it with a backslash. Alternatively, you can use backslash-escaping
to protect all data characters that would otherwise be taken as array syntax.

You may write whitespace before a left brace or after a right brace. You may also write whitespace be-
fore or after any individual item string. In all of these cases the whitespace will be ignored. However,
whitespace within double-quoted elements, or surrounded on both sides by non-whitespace characters of
an element, is not ignored.

Note: Remember that what you write in an SQL command will first be interpreted as a string literal,
and then as an array. This doubles the number of backslashes you need. For example, to insert a
text array value containing a backslash and a double quote, you'd need to write

INSERT ... VALUES (/{"\\\\","\\""}");

The string-literal processor removes one level of backslashes, so that what arrives at the array-value
parser looks like {"\\", "\""}. In turn, the strings fed to the text data type’s input routine become \
and " respectively. (If we were working with a data type whose input routine also treated backslashes
specially, bytea for example, we might need as many as eight backslashes in the command to get
one backslash into the stored array element.) Dollar quoting (see Section 4.1.2.2) may be used to
avoid the need to double backslashes.

Tip: The arrAY constructor syntax (see Section 4.2.10) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In ArRray, individual element values are
written the same way they would be written when not members of an array.

8.11. Composite Types

A composite type describes the structure of a row or record; it is in essence just a list of field names and
their data types. PostgreSQL allows values of composite types to be used in many of the same ways that
simple types can be used. For example, a column of a table can be declared to be of a composite type.

8.11.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE complex AS (

119



Chapter 8. Data Types

-

double precision,
i double precision

)i

CREATE TYPE inventory_item AS (

name text,
supplier_id integer,
price numeric

)i

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified; no
constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential; without
it, the system will think a quite different kind of CREATE TYPE command is meant, and you’ll get odd
syntax errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item inventory_item,
count integer

)

INSERT INTO on_hand VALUES (ROW(’fuzzy dice’, 42, 1.99), 1000);
or functions:

CREATE FUNCTION price_extension(inventory_item, integer) RETURNS numeric
AS ’'SELECT $1.price % $2’ LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as the
table, to represent the table’s row type. For example, had we said

CREATE TABLE inventory_item (

name text,
supplier_id integer REFERENCES suppliers,
price numeric CHECK (price > 0)

)i

then the same inventory_item composite type shown above would come into being as a byproduct, and
could be used just as above. Note however an important restriction of the current implementation: since
no constraints are associated with a composite type, the constraints shown in the table definition do not
apply to values of the composite type outside the table. (A partial workaround is to use domain types as
members of composite types.)

8.11.2. Composite Value Input

To write a composite value as a literal constant, enclose the field values within parentheses and separate
them by commas. You may put double quotes around any field value, and must do so if it contains commas

120



Chapter 8. Data Types

or parentheses. (More details appear below.) Thus, the general format of a composite constant is the
following:

"( vall , valz , ... )’
An example is
" ("fuzzy dice",42,1.99)’

which would be a valid value of the inventory_item type defined above. To make a field be NULL,
write no characters at all in its position in the list. For example, this constant specifies a NULL third field:

" ("fuzzy dice",42,)’
If you want an empty string rather than NULL, write double quotes:
’ ('l",42, ) ’

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Section 4.1.2.5.
The constant is initially treated as a string and passed to the composite-type input conversion routine. An
explicit type specification might be necessary.)

The ROW expression syntax may also be used to construct composite values. In most cases this is consid-
erably simpler to use than the string-literal syntax, since you don’t have to worry about multiple layers of
quoting. We already used this method above:

ROW (" fuzzy dice’, 42, 1.99)
ROW(”, 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so these
can simplify to

(" fuzzy dice’, 42, 1.99)
(", 42, NULL)

The rROW expression syntax is discussed in more detail in Section 4.2.11.

8.11.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a
field from a table name. In fact, it’s so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields from
our on_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

This will not work since the name item is taken to be a table name, not a field name, per SQL syntax
rules. You must write it like this:

SELECT (item) .name FROM on_hand WHERE (item).price > 9.99;

121



Chapter 8. Data Types

or if you need to use the table name as well (for instance in a multitable query), like this:
SELECT (on_hand.item) .name FROM on_hand WHERE (on_hand.item) .price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the item column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to select
just one field from the result of a function that returns a composite value, you’d need to write something
like

SELECT (my_func(...)).field FROM ...

Without the extra parentheses, this will provoke a syntax error.

8.11.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First, insert-
ing or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));

UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;
The first example omits ROW, the second uses it; we could have done it either way.
We can update an individual subfield of a composite column:

UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

Notice here that we don’t need to (and indeed cannot) put parentheses around the column name appearing
just after SET, but we do need parentheses when referencing the same column in the expression to the
right of the equal sign.

And we can specify subfields as targets for INSERT, too:
INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(1l.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have been
filled with null values.

8.11.5. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according to the
I/O conversion rules for the individual field types, plus decoration that indicates the composite structure.
The decoration consists of parentheses (( and )) around the whole value, plus commas (, ) between
adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it is considered
part of the field value, and may or may not be significant depending on the input conversion rules for the
field data type. For example, in

r( 42)!

122



Chapter 8. Data Types

the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you may write double quotes around any individual
field value. You must do so if the field value would otherwise confuse the composite-value parser. In
particular, fields containing parentheses, commas, double quotes, or backslashes must be double-quoted.
To put a double quote or backslash in a quoted composite field value, precede it with a backslash. (Also,
a pair of double quotes within a double-quoted field value is taken to represent a double quote character,
analogously to the rules for single quotes in SQL literal strings.) Alternatively, you can use backslash-
escaping to protect all data characters that would otherwise be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents a
NULL. To write a value that is an empty string rather than NULL, write "".

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space is
not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be doubled.

Note: Remember that what you write in an SQL command will first be interpreted as a string literal,
and then as a composite. This doubles the number of backslashes you need. For example, to insert a
text field containing a double quote and a backslash in a composite value, you'd need to write

INSERT ... VALUES (/ ("\\"\\\\")");

The string-literal processor removes one level of backslashes, so that what arrives at the composite-
value parser looks like ("\"\\"). In turn, the string fed to the text data type’s input routine becomes
"\. (If we were working with a data type whose input routine also treated backslashes specially, bytea
for example, we might need as many as eight backslashes in the command to get one backslash into
the stored composite field.) Dollar quoting (see Section 4.1.2.2) may be used to avoid the need to
double backslashes.

Tip: The row constructor syntax is usually easier to work with than the composite-literal syntax when
writing composite values in SQL commands. In row, individual field values are written the same way
they would be written when not members of a composite.

8.12. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
OIDs are not added to user-created tables, unless WITH 0OIDS is specified when the table is created, or the
default_with_oids configuration variable is enabled. Type oid represents an object identifier. There are
also several alias types for oid: regproc, regprocedure, regoper, regoperator, regclass, and
regtype. Table 8-19 shows an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large enough
to provide database-wide uniqueness in large databases, or even in large individual tables. So, using a
user-created table’s OID column as a primary key is discouraged. OIDs are best used only for references
to system tables.

123



Chapter 8. Data Types

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and then
manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned confusion
if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oid would use. The alias types allow simplified lookup of OID values for objects.
For example, to examine the pg_attribute rows related to a table mytable, one could write

SELECT * FROM pg_attribute WHERE attrelid = ’'mytable’ ::regclass;
rather than

SELECT % FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = ’'mytable’);

While that doesn’t look all that bad by itself, it’s still oversimplified. A far more complicated sub-select
would be needed to select the right OID if there are multiple tables named mytable in different schemas.
The regclass input converter handles the table lookup according to the schema path setting, and so it
does the “right thing” automatically. Similarly, casting a table’s OID to regclass is handy for symbolic
display of a numeric OID.

Table 8-19. Object Identifier Types

Name References Description Value Example

oid any numeric object identifier | 564182

regproc pPg_proc function name sum

regprocedure Pg_proc function with argument | sum(int4)
types

regoper pg_operator operator name +

regoperator pg_operator operator with argument |« (integer, integer)
types or — (NONE, integer)

regclass pg_class relation name Pg_type

regtype pPg_type data type name integer

All of the OID alias types accept schema-qualified names, and will display schema-qualified names on
output if the object would not be found in the current search path without being qualified. The regproc
and regoper alias types will only accept input names that are unique (not overloaded), so they are of
limited use; for most uses regprocedure or regoperator is more appropriate. For regoperator,
unary operators are identified by writing NONE for the unused operand.

An additional property of the OID alias types is that if a constant of one of these types appears in a stored
expression (such as a column default expression or view), it creates a dependency on the referenced ob-
ject. For example, if a column has a default expression nextval (' my_seq’ : :regclass), PostgreSQL
understands that the default expression depends on the sequence my_seq; the system will not let the
sequence be dropped without first removing the default expression.

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is the
data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities.

124



Chapter 8. Data Types

A third identifier type used by the system is cid, or command identifier. This is the data type of the system
columns cmin and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data type
of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that identifies
the physical location of the row within its table.

(The system columns are further explained in Section 5.4.)

8.13. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a func-
tion’s argument or result type. Each of the available pseudo-types is useful in situations where a function’s
behavior does not correspond to simply taking or returning a value of a specific SQL data type. Table 8-20
lists the existing pseudo-types.

Table 8-20. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type whatever.

anyarray Indicates that a function accepts any array data
type (see Section 32.2.5).

anyelement Indicates that a function accepts any data type (see
Section 32.2.5).
cstring Indicates that a function accepts or returns a

null-terminated C string.

internal Indicates that a function accepts or returns a
server-internal data type.

language_handler A procedural language call handler is declared to
return language_handler.

record Identifies a function returning an unspecified row
type.

trigger A trigger function is declared to return trigger.

void Indicates that a function returns no value.

opaque An obsolete type name that formerly served all the

above purposes.

Functions coded in C (whether built-in or dynamically loaded) may be declared to accept or return any of
these pseudo data types. It is up to the function author to ensure that the function will behave safely when
a pseudo-type is used as an argument type.

Functions coded in procedural languages may use pseudo-types only as allowed by their implementation
languages. At present the procedural languages all forbid use of a pseudo-type as argument type, and allow
only void and record as a result type (plus trigger when the function is used as a trigger). Some also

125



Chapter 8. Data Types

support polymorphic functions using the types anyarray and anyelement.

The internal pseudo-type is used to declare functions that are meant only to be called internally by the
database system, and not by direct invocation in a SQL query. If a function has at least one internal-type
argument then it cannot be called from SQL. To preserve the type safety of this restriction it is important
to follow this coding rule: do not create any function that is declared to return internal unless it has at
least one internal argument.

126



Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. Users can also
define their own functions and operators, as described in Part V. The psql commands \df and \do can be
used to show the list of all actually available functions and operators, respectively.

If you are concerned about portability then take note that most of the functions and operators described
in this chapter, with the exception of the most trivial arithmetic and comparison operators and some ex-
plicitly marked functions, are not specified by the SQL standard. Some of the extended functionality is
present in other SQL database management systems, and in many cases this functionality is compati-
ble and consistent between the various implementations. This chapter is also not exhaustive; additional
functions appear in relevant sections of the manual.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued Boolean logic where the null value represents “unknown”. Observe the following
truth tables:

a b a AND b aORb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.12 for more information about the order of evaluation of subex-
pressions.

127



Chapter 9. Functions and Operators

9.2. Comparison Operators

The usual comparison operators are available, shown in Table 9-1.

Table 9-1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to
= equal

<>or!= not equal

Note: The ' = operator is converted to <> in the parser stage. It is not possible to implement != and
<> operators that do different things.

Comparison operators are available for all data types where this makes sense. All comparison operators are
binary operators that return values of type boolean; expressions like 1 < 2 < 3 are not valid (because
there is no < operator to compare a Boolean value with 3).

In addition to the comparison operators, the special BETWEEN construct is available.
a BETWEEN x AND y
is equivalent to
a >= x AND a <= y
Similarly,
a NOT BETWEEN x AND y
is equivalent to
a < x OR a >y

There is no difference between the two respective forms apart from the CPU cycles required to rewrite
the first one into the second one internally. BETWEEN SYMMETRIC is the same as BETWEEN except there
is no requirement that the argument to the left of AND be less than or equal to the argument on the right;
the proper range is automatically determined.

To check whether a value is or is not null, use the constructs

expression IS NULL
expression IS NOT NULL

or the equivalent, but nonstandard, constructs

expression ISNULL

128



Chapter 9. Functions and Operators

expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents an
unknown value, and it is not known whether two unknown values are equal.) This behavior conforms to
the SQL standard.

Tip: Some applications may expect that expression = NULL returns true if expression evaluates
to the null value. It is highly recommended that these applications be modified to comply with the
SQL standard. However, if that cannot be done the transform_null_equals configuration variable is
available. If it is enabled, PostgreSQL will convert x = NULL clauses to x 1s NULL. This was the
default behavior in PostgreSQL releases 6.5 through 7.1.

The ordinary comparison operators yield null (signifying “unknown”) when either input is null. Another
way to do comparisons is with the IS DISTINCT FROM construct:

expression IS DISTINCT FROM expression

For non-null inputs this is the same as the <> operator. However, when both inputs are null it will return
false, and when just one input is null it will return true. Thus it effectively acts as though null were a
normal data value, rather than “unknown”.

Boolean values can also be tested using the constructs

expression 1S TRUE
expression IS NOT TRUE
expression IS FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null input
is treated as the logical value “unknown”. Notice that IS UNKNOWN and IS NOT UNKNOWN are effec-
tively the same as IS NULL and IS NOT NULL, respectively, except that the input expression must be of
Boolean type.

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without common mathemat-
ical conventions for all possible permutations (e.g., date/time types) we describe the actual behavior in
subsequent sections.

Table 9-2 shows the available mathematical operators.

Table 9-2. Mathematical Operators

Operator Description Example Result

+ addition 2 + 3 5

129



Chapter 9. Functions and Operators

Operator Description Example Result
- subtraction 2 -3 -1
* multiplication 2 % 3 6
/ division (integer 4 / 2 2

division truncates
results)
S modulo (remainder) 5% 4 1
~ exponentiation 2.0 ~ 3.0 8
|/ square root |/ 25.0 5
|1/ cube root [1/ 27.0 3
! factorial 5 ! 120
! factorial (prefix 'es 120
operator)
@ absolute value @ -5.0 5
& bitwise AND 91 & 15 11
| bitwise OR 32 | 3 35
# bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2
<< bitwise shift left 1 << 4 16
>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types, whereas the others are available for all numeric

data types. The bitwise operators are also available for the bit string types bit and bit varying, as

shown in Table 9-10.

Table 9-3 shows the available mathematical functions. In the table, dp indicates double precision.
Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same data type as its argument. The functions working
with double precision data are mostly implemented on top of the host system’s C library; accuracy
and behavior in boundary cases may therefore vary depending on the host system.

Table 9-3. Mathematical Functions

Function Return Type Description Example Result
abs (x) (same as x) absolute value abs (-17.4) 17.4
cbrt (dp) dp cube root cbrt (27.0) 3
ceil(dp or (same as input) smallest integer not | ceil (-42.8) -42
numeric) less than argument

ceiling (dp or (same as input) smallest integer not | ceiling (-95.3) |-95

numeric)

less than argument
(alias for ceil)

degrees (dp)

dp

radians to degrees

degrees (0.5)

28.647889756541

130




Chapter 9. Functions and Operators

Function Return Type Description Example Result
exp (dp or (same as input) exponential exp (1.0) 2.7182818284590
numeric)

floor (dp or

(same as input)

largest integer not

floor (-42.8)

-43

numeric) greater than
argument
ln(dp or (same as input) natural logarithm | 1n(2.0) 0.6931471805599
numeric)
log (dp or (same as input) base 10 logarithm |1og(100.0) 2
numeric)
log (b numeric, numeric logarithm to base b | log (2.0, 64.0) |6.0000000000
X numeric)
mod (y, x) (same as argument | remainder of y/x mod (9, 4) 1
types)
pi () dp “m” constant pi() 3.1415926535897
power (a dp, b dp a raised to the power (9.0, 729
dp) power of b 3.0)
power (a numeric a raised to the power (9.0, 729
numeric, b power of b 3.0)
numeric)
radians (dp) dp degrees to radians | radians (45.0) 0.7853981633974
random () dp random value random ()
between 0.0 and
1.0
round (dp or (same as input) round to nearest round (42.4) 42
numeric) integer
round (v numeric round to s decimal | round (42.4382, |42.44
numeric, s int) [ﬂaces 2)
setseed (dp) int set seed for setseed (0.54823)1177314959

subsequent
random () calls

sign(dp or (same as input) sign of the sign(-8.4) -1
numeric) argument (-1,0,
+1)
sqrt (dp or (same as input) square root sqrt (2.0) 1.4142135623731
numeric)
trunc (dp or (same as input) truncate toward trunc (42.8) 42
numeric) ZEero
trunc (v numeric truncate to s trunc(42.4382, |42.43

numeric, s int)

decimal places

2)

131

48



Chapter 9. Functions and Operators

numeric, count

int)

in an equidepth
histogram with
count buckets, an
upper bound of b1,
and a lower bound
of b2

Function Return Type Description Example Result
width_bucket (op |int return the bucket to | width_bucket (5.[3%,
numeric, bl which operand 0.024, 10.06,

numeric, b2 would be assigned | 5)

Finally, Table 9-4 shows the available trigonometric functions. All trigonometric functions take arguments
and return values of type double precision.

Table 9-4. Trigonometric Functions

Function Description
acos (x) inverse cosine
asin (x) inverse sine
atan (x) inverse tangent

atan2 (x, y)

inverse tangent of x/y

cos (x) cosine
cot (x) cotangent
sin (x) sine

tan (x) tangent

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of all the types character, character varying, and text. Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of potential
effects of the automatic padding when using the character type. Generally, the functions described
here also work on data of non-string types by converting that data to a string representation first. Some
functions also exist natively for the bit-string types.

SQL defines some string functions with a special syntax where certain key words rather than commas are
used to separate the arguments. Details are in Table 9-5. These functions are also implemented using the
regular syntax for function invocation. (See Table 9-6.)

Table 9-5. SQL String Functions and Operators

Function Return Type Description Example Result
string || text String "Post’ || PostgreSQL
string concatenation " greSQL’

132




Chapter 9. Functions and Operators

Function Return Type Description Example Result

bit_length (string)int Number of bits in  |bit_length (' josg32
string

char_length (stringnt Number of char_length (' jojsk’ )

or

characters in string

character_length (string)
convert (string text Change encoding |convert (' Postgr/®idtgreSQL’ in
using using specified using UTFS8 (Unicode,
conversion_name) conversion name. |iso_8859_1_to_ut&bit) encoding
Conversions can be
defined by CREATE
CONVERSTION. Also
there are some
pre-defined
conversion names.
See Table 9-7 for
available
conversion names.
lower (string) text Convert string to lower (/ TOM') tom
lower case
octet_length (stridglt Number of bytes in | octet_length (’ joke’)
string
overlay (string text Replace substring |overlay (' Txxxxalsfhomas
placing string placing "hom’
from int [for from 2 for 4)
int])
position (substrindnt Location of position (’om’ 3
in string) specified substring |in ’Thomas’)
substring (string|text Extract substring | substring (’ Thomasdm
[from int] from 2 for 3)
[for int])
substring (string|text Extract substring | substring (’ Thomasds
from pattern) matching POSIX |from 7...$")
regular expression
substring (string|text Extract substring | substring (/ Thomasfia

from pattern

for escape)

matching SQL
regular expression

from
14 %#" O_a#"_,

")

for

133




Chapter 9. Functions and Operators

Function Return Type Description Example Result
trim([leading |text Remove the trim(both ’x’ Tom
| trailing | longest string from ’xTomxx’)
both] containing only the
[characters] characters (a
from string) space by default)
from the
start/end/both ends
of the string
upper (string) text Convert string to upper (' tom’) TOM

uppercase

Additional string manipulation functions are available and are listed in Table 9-6. Some of them are used
internally to implement the SQL-standard string functions listed in Table 9-5.

Table 9-6. Other String Functions

name)

src_encoding. If
src_encodingis
omitted, database
encoding is
assumed.

Function Return Type Description Example Result
ascii (text) int ASCII code of the |ascii(’x’) 120
first character of
the argument
btrim(string text Remove the btrim (' xyxtrimyyx*im
text [, longest string "xy”)
characters consisting only of
text]) characters in
characters (a
space by default)
from the start and
end of string
chr (int) text Character with the | chr (65) A
given ASCII code
convert (string |text Convert string to | convert ( text_in_utf8
text, dest_encoding. |’text_in_utf8’,|represented in ISO
[src_encoding The original 'UTF8’, 8859-1 encoding
name, ] encoding is "LATINL')
dest_encoding specified by

134




Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

decode (string
text, type

text)

bytea

Decode binary
data from string
previously encoded
with encode.
Parameter type is
same as in

encode.

decode (" MTIzAAE
"baseb64d’)

Fr23\000\001

encode (data
bytea, type

text)

text

Encode binary
data to ASCII-only
representation.
Supported types
are: base64, hex,

escape.

encode (
7123\\000\\001"
"baseob6d’)

MTIzAAE=

’

initcap (text)

text

Convert the first
letter of each word
to uppercase and
the rest to
lowercase. Words
are sequences of
alphanumeric
characters
separated by
non-alphanumeric
characters.

initcap(’hi
THOMAS' )

Hi Thomas

length (string
text)

int

Number of
characters in

string

length (' jose’)

lpad (string
text, length
int [, fill

text])

text

Fill up the string
to length length
by prepending the
characters £i11 (a
space by default).
If the stringis
already longer than
length then it is
truncated (on the
right).

lpad('hi’, 5,
Ixyl)

xyxhi

ltrim(string

text [,
characters
text])

text

Remove the
longest string
containing only
characters from
characters (a
space by default)
from the start of

string

ltrim(/ zzzytrim'trim

" xyz')

135




Chapter 9. Functions and Operators

Function Return Type Description Example Result
md5 (string text Calculates the md5 (/ abe’) 900150983cd24fb)
text) MD)5 hash of d6963£f7d28el7f7

string, returning
the result in
hexadecimal

N

pg_client_encodin

qgme

Current client
encoding name

pg_client_encod

iSEI()ASCII

quote_ident (striy

text)

dext

Return the given
string suitably
quoted to be used
as an identifier in
an SQL statement
string. Quotes are
added only if
necessary (i.e., if
the string contains
non-identifier
characters or
would be
case-folded).
Embedded quotes
are properly
doubled.

quote_ident (' Fo
bar’)

o"Foo bar"

quote_literal (sty
text)

frext

Return the given
string suitably
quoted to be used
as a string literal in
an SQL statement
string. Embedded

quote_literal (
"O\'Reilly"’)

"O"Reilly’

quotes and

backslashes are

properly doubled.
repeat (string text Repeat string the | repeat (' Pg’, PgPgPgPg
text, number specified number | 4)
int) of times
replace (string |text Replace all replace ( abXXefabxXef
text, from occurrences in " abcdefabedef’,
text, to text) string of fed’, TXX'")

substring from
with substring to

136



Chapter 9. Functions and Operators

Function Return Type Description Example Result
rpad (string text Fill up the string | rpad (' hi’, 5, hixyx
text, length to length length |’xy’)
int [, fill by appending the
text]) characters fi11 (a

space by default).

If the stringis

already longer than

length then it is

truncated.
rtrim(string text Remove the rtrim(’ trimxxxx/trim
text [, longest string "%’
characters containing only
text]) characters from

characters (a
space by default)
from the end of

string

split_part (stringtext Split string on split_part (’ abcl@efef~Q~ghi’,
text, delimiter delimiter and r~@~T, 2)
text, field return the given
int) field (counting

from one)
strpos (string, text Location of strpos (’high’, |2
substring) specified substring |’ ig’)

(same as

position (substring

in string), but

note the reversed

argument order)
substr (string, text Extract substring | substr (’ alphabeigh
from [, count]) (same as 3, 2)

substring (string

from from for

count))
to_ascii (text text Convert text to |to_ascii (’Karel/Harel
[, encoding]) ASCII from

another encoding a
to_hex (number text Convert number to |to_hex (214748364THEffEfEEf

int or bigint)

its equivalent
hexadecimal
representation

137




Chapter 9. Functions and Operators

Function

Return Type

Description

Example Result

translate (string
text, from

text, to text)

text

Any character in
string that
matches a
character in the
from set is
replaced by the
corresponding
character in the to
set

translate (' 1234|=253x5
1147, rax’)

Notes:

a. The to_ascii function supports conversion from LATIN1, LATIN2, LATINY, and WIN1250

encodings only.

Table 9-7. Built-in Conversions

Conversion Name a

Source Encoding

Destination Encoding

ascii_to_mic SQL_ASCII MULE_INTERNAL
ascii_to_utfs8 SQL_ASCII UTF8
bigb_to_euc_tw BIGS EUC_TW
bigb_to_mic BIGS MULE_INTERNAL
bigb_to_utf8 BIGS UTFE8
euc_cn_to_mic EUC_CN MULE_INTERNAL
euc_cn_to_utf8 EUC_CN UTF'8
euc_jp_to_mic EUC_JP MULE_INTERNAL
euc_Jjp_to_sjis EUC_JP SJIS
euc_Jjp_to_utfs8 EUC_JP UTF8
euc_kr_to_mic EUC_KR MULE_INTERNAL
euc_kr_to_utf8 EUC_KR UTF8
euc_tw_to_bigh EUC_TW BIGSH
euc_tw_to_mic EUC_TwW MULE_INTERNAL
euc_tw_to_utf8 EUC_TW UTF8
gb18030_to_utf8 GB18030 UTF8
gbk_to_utf8 GBK UTFE8
iso_8859_10_to_utf8 LATING UTFE8
is0_8859_13_to_utf8 LATIN7 UTF8
iso_8859_14_to_utf8 LATINS UTF8
iso_8859_15_to_utf8 LATINO UTF8
iso_8859_16_to_utf8 LATIN1O UTFEFS8
is0_8859_1_to_mic LATIN1 MULE_INTERNAL
iso_8859_1_to_utfs LATIN1 UTF8

iso_8859 2 to_mic LATIN2 MULE_INTERNAL

138




Chapter 9. Functions and Operators

Conversion Name -

Source Encoding

Destination Encoding

is0_8859_2_to_utfs8 LATIN2 UTF8
iso_8859_2 to_windows_1250LATIN2 WIN1250
1is0_8859_3_to_mic LATIN3 MULE_INTERNAL
iso_8859_3_to_utf8 LATIN3 UTF8
is0_8859_4_to_mic LATIN4 MULE_INTERNAL
iso0_8859_4_to_utfs8 LATIN4 UTF8
iso_8859_5_ to_koi8_r I15S0_8859_5 KO1IS8
iso_8859_ 5 _to_mic I1S0_8859_5 MULE_INTERNAL
1s0_8859_5_to_utfs8 ISO_8859_5 UTF8
iso_8859_5_to_windows_1251IS0_8859_5 WIN1251
iso_8859_ 5 to_windows_866|IS0O_8859_5 WIN866
iso_8859_6_to_utf8 ISO_8859_6 UTF8
is0_8859_7_to_utf8 ISO_8859_7 UTF8
is0_8859_8_to_utf8 IS0_8859_8 UTF8
iso_8859_9_ to_utfs8 LATINS UTFE8
johab_to_utfs8 JOHAB UTF8

koi8_ r_ to_iso_8859_5 KOIS8 IS0_8859_5
koi8_r_to_mic KOI8 MULE_INTERNAL
koi8_r_to_utf8 KOI8 UTF8

koi8_r_ to_windows_1251 KOIS8 WIN1251
koi8_r_to_windows_866 KOIS8 WIN866
mic_to_ascii MULE_INTERNAL SQL_ASCII
mic_to_bigh MULE_INTERNAL BIGS
mic_to_euc_cn MULE_INTERNAL EUC_CN
mic_to_euc_jp MULE_INTERNAL EUC_JP
mic_to_euc_kr MULE_INTERNAL EUC_KR
mic_to_euc_tw MULE_INTERNAL EUC_TW
mic_to_iso_8859_1 MULE_INTERNAL LATIN1
mic_to_iso_8859_2 MULE_INTERNAL LATIN2
mic_to_iso_8859_3 MULE_INTERNAL LATIN3
mic_to_iso_8859_4 MULE_INTERNAL LATIN4
mic_to_1iso_8859_5 MULE_INTERNAL IS0_8859_5
mic_to_koi8_r MULE_INTERNAL KOIS8
mic_to_sijis MULE_INTERNAL SJIS
mic_to_windows_1250 MULE_INTERNAL WIN1250
mic_to_windows_1251 MULE_INTERNAL WIN1251

139




Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
mic_to_windows_866 MULE_INTERNAL WIN866
sjis_to_euc_jp SJIS EUC_JpP
sjis_to_mic SJIS MULE_INTERNAL
sjis_to_utfs8 SJIS UTF8
tcvn_to_utf8 WIN1258 UTF8
uhc_to_utf8 UHC UTF8
utf8_to_ascii UTF8 SQL_ASCII
utf8_to_bigs UTF8 BIGS
utf8_to_euc_cn UTF8 EUC_CN
utf8_to_euc_Jjp UTF8 EUC_JP
utf8_to_euc_kr UTF8 EUC_KR
utf8_to_euc_tw UTF8 EUC_TW
utf8_to_gbl8030 UTF8 GB18030

ut £8_to_gbk UTF8 GBK
utf8_to_iso_8859_1 UTF8 LATIN1
utf8_to_iso_8859_10 UTF8 LATING
utf8_ _to_iso_8859 13 UTF8 LATIN7
utf8_to_iso_8859_14 UTF8 LATINS
utf8_ _to_iso_8859 15 UTF8 LATINY
utf8_to_iso_8859_ 16 UTF8 LATIN1O
utf8_to_iso_8859_2 UTF8 LATINZ
utf8_to_iso_8859_3 UTF8 LATIN3
utf8_to_iso_8859_4 UTF8 LATIN4
utf8_to_iso_8859_5 UTF8 IS0_8859_5
utf8_to_iso_8859_6 UTF8 ISO_8859_6
utf8_to_iso_8859_7 UTF8 IS0O_8859_7
utf8_to_iso_8859_8 UTF8 IS0_8859_8
utf8_to_iso_8859_9 UTF8 LATINS
utf8_to_johab UTF8 JOHAB
utf8_to_koi8_r UTF8 KOI8
utf8_to_sjis UTF8 SJIS
utf8_to_tcvn UTF8 WIN1258
utf£8_to_uhc UTF8 UHC
utf8_to_windows_1250 UTF8 WIN1250
utf8_to_windows_1251 UTF8 WIN1251
utf8_to_windows_1252 UTF8 WIN1252
utf8_to_windows_1256 UTF8 WIN1256
utf8_to_windows_866 UTF8 WIN866

140




Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
utf8_to_windows_874 UTFS8 WIN874
windows_1250_to_iso_8859_2WIN1250 LATIN2
windows_1250_to_mic WIN1250 MULE_INTERNAL
windows_1250_to_utf8 WIN1250 UTF8

windows_1251 to_iso_8859 bPWIN1251 ISO_8859_5
windows_1251_to_koi8_r WIN1251 KOI8
windows_1251_to_mic WIN1251 MULE_INTERNAL
windows_1251_to_utf8 WIN1251 UTF8
windows_1251_to_windows_8¢WIN1251 WINB66

windows_1252_ to_utf8 WIN1252 UTF8
windows_1256_to_utf8 WIN1256 UTF8
windows_866_to_iso_ 8859 5|WIN866 IS0_8859_5
windows_866_to_koi8_r WIN866 KO1IS8
windows_866_to_mic WINB66 MULE_INTERNAL
windows_866_to_utf8 WIN866 UTF8
windows_866_to_windows_12b5WIN866 WIN
windows_874_to_utf8 WIN874 UTF8

Notes:

a. The conversion names follow a standard naming scheme: The official name of the source encoding
with all non-alphanumeric characters replaced by underscores followed by _to_ followed by the
equally processed destination encoding name. Therefore the names might deviate from the customary
encoding names.

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating values of type bytea.

SQL defines some string functions with a special syntax where certain key words rather than commas are
used to separate the arguments. Details are in Table 9-8. Some functions are also implemented using the
regular syntax for function invocation. (See Table 9-9.)

Table 9-8. SQL Binary String Functions and Operators

Function \ Return Type Description Example Result

141



Chapter 9. Functions and Operators

Function Return Type Description Example Result
string || bytea String "\\\\Post’ : :bytlee\Post’ gres\000
string concatenation ||

"\\047gres\\000

" ::bytea

octet_length (strij

dgjt

Number of bytes in
binary string

octet_length (
"Jo\\000se’ : : by

5

tea)

position (substrirn

in string)

gnt

Location of
specified substring

position (/" \\000
in
"Th\\00Oomas’ :

o}’ : :bytea

:bytea)

substring (string |bytea Extract substring | substring (/ Th\\[d00&0Gs’ : :bytea
[from int] from 2 for 3)
[for int])
trim([both] bytea Remove the trim (/\\000" : : byFea
bytes from longest string from
string) containing only the | 7 \\000Tom\\000’|: :bytea)
bytes in bytes
from the start and
end of string
get_byte(string, int Extract byte from |get_byte ( Th\\0[0D®%as’ : :bytea,
offset) string 4)
set_byte(string,|bytea Set byte in string | set_byte (’ Th\\ 0[0lox&&akdytea,
offset, 4, 64)
newvalue)
get_bit(string, |int Extract bit from get_bit (' Th\\00[0bmas’ : :bytea,
offset) string 45)
set_bit(string, |bytea Set bit in string set_bit ( Th\\00Bmedd Catis ea,

offset,

newvalue)

45, 0)

Additional binary string manipulation functions are available and are listed in Table 9-9. Some of them
are used internally to implement the SQL-standard string functions listed in Table 9-8.

Table 9-9. Other Binary String Functions

Function Return Type Description Example Result
btrim(string bytea Remove the btrim (" \\000tripdAMO0’ : :bytea,
bytea, bytes longest string ’\\000’ : :bytea)

bytea) consisting only of

bytes in bytes
from the start and
end of string

142




Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

length (string)

int

Length of binary
string

length (/ 70\\000

=’ ::bytea)

md5 (string)

text

Calculates the
MDS5 hash of
string, returning
the result in
hexadecimal

md5 (/ Th\\000oma

SBakdbdFen)89aafl
p4958c334c82d8h

decode (string
text, type

text)

bytea

Decode binary
string from
string previously
encoded with
encode. Parameter
type is same as in

encode.

decode (" 123\\00

"escape’)

0UZFHN(G00456

encode (string
bytea, type

text)

text

Encode binary
string to
ASClII-only
representation.
Supported types
are: base64, hex,

escape.

encode (7 123\\00

"escape’)

UEH CobiEea,

[e9)

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is values
of the types bit and bit varying. Aside from the usual comparison operators, the operators shown in
Table 9-10 can be used. Bit string operands of &, |, and # must be of equal length. When bit shifting, the
original length of the string is preserved, as shown in the examples.

Table 9-10. Bit String Operators

Operator Description Example Result
| concatenation B”10001" || B"011” |10001011
& bitwise AND B/10001’ & 00001
B/01101
bitwise OR B’10001" | 11101
B/01101"
# bitwise XOR B’10001" # 11100
B/01101"
~ bitwise NOT ~ B’10001' 01110
<< bitwise shift left B’10001’" << 3 01000

143



Chapter 9. Functions and Operators

Operator Description Example Result
>> bitwise shift right B’10001’" >> 2 00100

The following SQL-standard functions work on bit strings as well as character strings: length,
bit_length, octet_length, position, substring.

In addition, it is possible to cast integral values to and from type bit. Some examples:

44::bit (10) 0000101100
44::bit (3) 100

cast (=44 as bit(12)) 111111010100
71110’ ::bit (4) : :integer 14

Note that casting to just “bit” means casting to bit (1), and so it will deliver only the least significant bit
of the integer.

Note: Prior to PostgreSQL 8.0, casting an integer to bit (n) would copy the leftmost n bits of the
integer, whereas now it copies the rightmost n bits. Also, casting an integer to a bit string width wider
than the integer itself will sign-extend on the left.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL: the traditional SQL
LIKE operator, the more recent SIMILAR TO operator (added in SQL:1999), and POSIX-style regular
expressions. Additionally, a pattern matching function, substring, is available, using either SIMILAR
TO-style or POSIX-style regular expressions.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined function
in Perl or Tcl.

9.7.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

Every pattern defines a set of strings. The LIKE expression returns true if the string is contained in
the set of strings represented by pattern. (As expected, the NOT LIKE expression returns false if LIKE
returns true, and vice versa. An equivalent expression is NOT (string LIKE pattern).)

If pattern does not contain percent signs or underscore, then the pattern only represents the string itself;
in that case LIKE acts like the equals operator. An underscore (_) in pattern stands for (matches) any
single character; a percent sign (%) matches any string of zero or more characters.

Some examples:

"abc’ LIKE ’abc’ true

144




Chapter 9. Functions and Operators

"abc’ LIKE "a%’ true
"abc’ LIKE ’"_b_’ true
"abc’ LIKE ’c’ false

LIKE pattern matches always cover the entire string. To match a sequence anywhere within a string, the
pattern must therefore start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective character
in pattern must be preceded by the escape character. The default escape character is the backslash but a
different one may be selected by using the ESCAPE clause. To match the escape character itself, write two
escape characters.

Note that the backslash already has a special meaning in string literals, so to write a pattern constant that
contains a backslash you must write two backslashes in an SQL statement. Thus, writing a pattern that
actually matches a literal backslash means writing four backslashes in the statement. You can avoid this
by selecting a different escape character with ESCAPE; then a backslash is not special to LIKE anymore.
(But it is still special to the string literal parser, so you still need two of them.)

It’s also possible to select no escape character by writing ESCAPE ”. This effectively disables the escape
mechanism, which makes it impossible to turn off the special meaning of underscore and percent signs in
the pattern.

The key word ILIKE can be used instead of LIKE to make the match case-insensitive according to the
active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator ~~ is equivalent to LIKE, and ~~* corresponds to ILIKE. There are also !~~ and !~~~
operators that represent NOT LIKE and NOT ILIKE, respectively. All of these operators are PostgreSQL-
specific.

9.7.2. stMILAR TO Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given string.
It is much like LIKE, except that it interprets the pattern using the SQL standard’s definition of a regular
expression. SQL regular expressions are a curious cross between LIKE notation and common regular
expression notation.

Like L.IKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is unlike
common regular expression practice, wherein the pattern may match any part of the string. Also like
LIKE, SIMILAR TO uses _ and % as wildcard characters denoting any single character and any string,
respectively (these are comparable to . and . » in POSIX regular expressions).

In addition to these facilities borrowed from LIKE, SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

+ | denotes alternation (either of two alternatives).

« * denotes repetition of the previous item zero or more times.

145



Chapter 9. Functions and Operators

» + denotes repetition of the previous item one or more times.
- Parentheses () may be used to group items into a single logical item.
« A bracket expression [ .. .] specifies a character class, just as in POSIX regular expressions.

Notice that bounded repetition (2 and { . . . }) are not provided, though they exist in POSIX. Also, the dot
(.) is not a metacharacter.

As with LIKE, a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified with ESCAPE.

Some examples:

"abc’ SIMILAR TO 'abc’ true

"abc’ SIMILAR TO ’a’ false

"abc’ SIMILAR TO "% (bld)%’ true
14

"abc’ SIMILAR TO ' (bl|c)% false

The substring function with three parameters, substring(string from pattern for
escape-character) , provides extraction of a substring that matches an SQL regular expression pattern.
As with SIMILAR TO, the specified pattern must match to the entire data string, else the function fails
and returns null. To indicate the part of the pattern that should be returned on success, the pattern must
contain two occurrences of the escape character followed by a double quote ("). The text matching the
portion of the pattern between these markers is returned.

Some examples:

substring (' foobar’ from ’$#"o_b#"%’ for ’"#') oob
substring (' foobar’ from '#"o_b#"%$’ for "#') NULL

9.7.3. POSIX Regular Expressions

Table 9-11 lists the available operators for pattern matching using POSIX regular expressions.

Table 9-11. Regular Expression Match Operators

Operator Description Example
~ Matches regular expression, case |’ thomas’ ~ ’.xthomas.*’
sensitive
~x Matches regular expression, case |’ thomas’ ~x /.xThomas.x*’
insensitive
I~ Does not match regular "thomas’ !~ ’.+Thomas.x’

expression, case sensitive

L~k Does not match regular "thomas’ !~ ' .+vadim.x’
expression, case insensitive

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and

146




Chapter 9. Functions and Operators

SIMILAR TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a regular
set). A string is said to match a regular expression if it is a member of the regular set described by the
regular expression. As with LIKE, pattern characters match string characters exactly unless they are special
characters in the regular expression language — but regular expressions use different special characters
than LIKE does. Unlike LIKE patterns, a regular expression is allowed to match anywhere within a string,
unless the regular expression is explicitly anchored to the beginning or end of the string.

Some examples:

"abc’ ~ ’"abc’ true
"abc’ ~ ’'"a’ true
rabce’ ~ " (b|d)’ true
"abc’ ~ " (blc)’ false

The substring function with two parameters, substring (string from pattern), provides extrac-
tion of a substring that matches a POSIX regular expression pattern. It returns null if there is no match,
otherwise the portion of the text that matched the pattern. But if the pattern contains any parentheses,
the portion of the text that matched the first parenthesized subexpression (the one whose left parenthe-
sis comes first) is returned. You can put parentheses around the whole expression if you want to use
parentheses within it without triggering this exception. If you need parentheses in the pattern before the
subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring (’ foobar’ from ’"o0.b’) oob
substring (' foobar’ from 'o(.)b’") o

The regexp_replace function provides substitution of new text for substrings that match POSIX regular
expression patterns. It has the syntax regexp_replace(source, pattern, replacement [, flags
). The source string is returned unchanged if there is no match to the pattern. If there is a match,
the source string is returned with the replacement string substituted for the matching substring. The
replacement string can contain \ n, where n is 1 through 9, to indicate that the source substring matching
the n’th parenthesized subexpression of the pattern should be inserted, and it can contain \ & to indicate that
the substring matching the entire pattern should be inserted. Write \\ if you need to put a literal backslash
in the replacement text. (As always, remember to double backslashes written in literal constant strings.)
The f1ags parameter is an optional text string containing zero or more single-letter flags that change the
function’s behavior. Flag i specifies case-insensitive matching, while flag g specifies replacement of each
matching substring rather than only the first one.

Some examples:

regexp_replace (’ foobarbaz’, ’'b..’, 'X")

fooXbaz
regexp_replace (' foobarbaz’, 'b..”, 'X’', 'g’)

fooXX
regexp_replace (’ foobarbaz’, 'b(..)", "X\\1Y’, 'g’)

fooXarYXazyY

147



Chapter 9. Functions and Operators

PostgreSQL’s regular expressions are implemented using a package written by Henry Spencer. Much of
the description of regular expressions below is copied verbatim from his manual entry.

9.7.3.1. Regular Expression Details

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs
(roughly those of egrep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become widely
used anyway due to their availability in programming languages such as Perl and Tcl. REs using these
non-POSIX extensions are called advanced REs or AREs in this documentation. AREs are almost an
exact superset of EREs, but BREs have several notational incompatibilities (as well as being much more
limited). We first describe the ARE and ERE forms, noting features that apply only to AREs, and then
describe how BREs differ.

Note: The form of regular expressions accepted by PostgreSQL can be chosen by setting the
regex_flavor run-time parameter. The usual setting is advanced, but one might choose extended for
maximum backwards compatibility with pre-7.4 releases of PostgreSQL.

A regular expression is defined as one or more branches, separated by |. It matches anything that matches
one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the first,
followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches a
match for the atom. With a quantifier, it can match some number of matches of the atom. An atom can
be any of the possibilities shown in Table 9-12. The possible quantifiers and their meanings are shown in
Table 9-13.

A constraint matches an empty string, but matches only when specific conditions are met. A constraint
can be used where an atom could be used, except it may not be followed by a quantifier. The simple
constraints are shown in Table 9-14; some more constraints are described later.

Table 9-12. Regular Expression Atoms

Atom Description

(re) (where re is any regular expression) matches a
match for re, with the match noted for possible
reporting

(?:re) as above, but the match is not noted for reporting
(a “non-capturing” set of parentheses) (AREs
only)

matches any single character

[chars] a bracket expression, matching any one of the
chars (see Section 9.7.3.2 for more detail)

148



Chapter 9. Functions and Operators

Atom

Description

\k

(where k is a non-alphanumeric character)
matches that character taken as an ordinary
character, e.g. \\ matches a backslash character

where c is alphanumeric (possibly followed by
other characters) is an escape, see Section 9.7.3.3
(AREs only; in EREs and BREs, this matches c)

when followed by a character other than a digit,
matches the left-brace character {; when followed
by a digit, it is the beginning of a bound (see
below)

where x is a single character with no other
significance, matches that character

An RE may not end with \.

Note: Remember that the backslash (\) already has a special meaning in PostgreSQL string literals.
To write a pattern constant that contains a backslash, you must write two backslashes in the statement.

Table 9-13. Regular Expression Quantifiers

Quantifier Matches

* a sequence of 0 or more matches of the atom

+ a sequence of 1 or more matches of the atom

? a sequence of 0 or 1 matches of the atom

{m} a sequence of exactly m matches of the atom
{m,} a sequence of m or more matches of the atom

{m, n} a sequence of m through n (inclusive) matches of

the atom; m may not exceed n

*? non-greedy version of «

+? non-greedy version of +

27 non-greedy version of ?

{m}? non-greedy version of {m}

{m, }? non-greedy version of {m, }

{m,n}? non-greedy version of {m, n}

The forms using { . . . } are known as bounds. The numbers m and n within a bound are unsigned decimal

integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their corresponding nor-
mal (greedy) counterparts, but prefer the smallest number rather than the largest number of matches. See

Section 9.7.3.5 for more detail.

Note: A quantifier cannot immediately follow another quantifier. A quantifier cannot begin an expres-

149




Chapter 9. Functions and Operators

sion or subexpression or follow ~ or |.

Table 9-14. Regular Expression Constraints

Constraint Description
8 matches at the beginning of the string
$ matches at the end of the string
(?=re) positive lookahead matches at any point where a

substring matching re begins (AREs only)

(?!re) negative lookahead matches at any point where no
substring matching re begins (AREs only)

Lookahead constraints may not contain back references (see Section 9.7.3.3), and all parentheses within
them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is a list of characters enclosed in []. It normally matches any single character from
the list (but see below). If the list begins with ~, it matches any single character not from the rest of
the list. If two characters in the list are separated by —, this is shorthand for the full range of characters
between those two (inclusive) in the collating sequence, e.g. [0-9] in ASCII matches any decimal digit. It
is illegal for two ranges to share an endpoint, e.g. a-c-e. Ranges are very collating-sequence-dependent,
so portable programs should avoid relying on them.

To include a literal ] in the list, make it the first character (following a possible ~). To include a literal -,
make it the first or last character, or the second endpoint of a range. To use a literal - as the first endpoint
of arange, enclose itin [. and . ] to make it a collating element (see below). With the exception of these
characters, some combinations using [ (see next paragraphs), and escapes (AREs only), all other special
characters lose their special significance within a bracket expression. In particular, \ is not special when
following ERE or BRE rules, though it is special (as introducing an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that collates as
if it were a single character, or a collating-sequence name for either) enclosed in [. and . ] stands for the
sequence of characters of that collating element. The sequence is a single element of the bracket expres-
sion’s list. A bracket expression containing a multiple-character collating element can thus match more
than one character, e.g. if the collating sequence includes a ch collating element, thenthe RE [[.ch.]1]1*c
matches the first five characters of chchcec.

Note: PostgreSQL currently has no multicharacter collating elements. This information describes pos-
sible future behavior.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, standing
for the sequences of characters of all collating elements equivalent to that one, including itself. (If there
are no other equivalent collating elements, the treatment is as if the enclosing delimiters were [. and .1.)

150



Chapter 9. Functions and Operators

For example, if o and ~ are the members of an equivalence class, then [ [=o=11, [[="=]], and [o"] are
all synonymous. An equivalence class may not be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list of
all characters belonging to that class. Standard character class names are: alnum, alpha, blank, cntrl,
digit, graph, lower, print, punct, space, upper, xdigit. These stand for the character classes
defined in ctype. A locale may provide others. A character class may not be used as an endpoint of a
range.

There are two special cases of bracket expressions: the bracket expressions [[:<:]] and [[:>:]] are
constraints, matching empty strings at the beginning and end of a word respectively. A word is defined as
a sequence of word characters that is neither preceded nor followed by word characters. A word character
is an alnum character (as defined by ctype) or an underscore. This is an extension, compatible with but
not specified by POSIX 1003.2, and should be used with caution in software intended to be portable to
other systems. The constraint escapes described below are usually preferable (they are no more standard,
but are certainly easier to type).

9.7.3.3. Regular Expression Escapes

Escapes are special sequences beginning with \ followed by an alphanumeric character. Escapes come in
several varieties: character entry, class shorthands, constraint escapes, and back references. A \ followed
by an alphanumeric character but not constituting a valid escape is illegal in AREs. In EREs, there are no
escapes: outside a bracket expression, a \ followed by an alphanumeric character merely stands for that
character as an ordinary character, and inside a bracket expression, \ is an ordinary character. (The latter
is the one actual incompatibility between EREs and AREs.)

Character-entry escapes exist to make it easier to specify non-printing and otherwise inconvenient char-
acters in REs. They are shown in Table 9-15.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9-16.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written as an
escape. They are shown in Table 9-17.

A back reference (\n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9-18). For example, ([bc]) \1 matches bb or cc but not bc or cb.
The subexpression must entirely precede the back reference in the RE. Subexpressions are numbered in
the order of their leading parentheses. Non-capturing parentheses do not define subexpressions.

Note: Keep in mind that an escape’s leading \ will need to be doubled when entering the pattern as
an SQL string constant. For example:

71237 ~ "~\\d{3}’ true

Table 9-15. Regular Expression Character-Entry Escapes

Escape Description

151



Chapter 9. Functions and Operators

Escape Description

\a alert (bell) character, as in C

\b backspace, as in C

\B synonym for \ to help reduce the need for
backslash doubling

\cX (where x is any character) the character whose
low-order 5 bits are the same as those of X, and
whose other bits are all zero

\e the character whose collating-sequence name is
ESC, or failing that, the character with octal value
033

\f form feed, as in C

\n newline, as in C

\r carriage return, as in C

\t horizontal tab, as in C

\uwxyz (where wxyz is exactly four hexadecimal digits)
the UTF16 (Unicode, 16-bit) character U+wxyz in
the local byte ordering

\Ustuvwxyz (where stuvwxyz is exactly eight hexadecimal
digits) reserved for a somewhat-hypothetical
Unicode extension to 32 bits

\v vertical tab, as in C

\xhhh (where hhh is any sequence of hexadecimal
digits) the character whose hexadecimal value is
Oxhhh (a single character no matter how many
hexadecimal digits are used)

\0 the character whose value is 0

\xy (where xy is exactly two octal digits, and is not a
back reference) the character whose octal value is
Oxy

\xyz (where xyz is exactly three octal digits, and is not

a back reference) the character whose octal value
is Oxyz

Hexadecimal digits are 0-9, a-£f, and A-F. Octal digits are 0-7.

The character-entry escapes are always taken as ordinary characters. For example, \135 is ] in ASCII,

but \135 does not terminate a bracket expression.

Table 9-16. Regular Expression Class-Shorthand Escapes

Escape Description
\d [[:digit:]]
\s [[:space:]]

152




Chapter 9. Functions and Operators

Escape Description

\w [[:alnum:]_] (note underscore is included)
\D [*[:digit:]]

\S ["[:space:]]

\W [“[:alnum:]_] (note underscore is included)

Within bracket expressions, \d, \s, and \w lose their outer brackets, and \D, \S, and \w are illegal.
(So, for example, [a-c\d] is equivalent to [a-c[:digit:]]. Also, [a-c\D], which is equivalent to

[a-—c”[:digit:]],isillegal.)

Table 9-17. Regular Expression Constraint Escapes

Escape Description
\A matches only at the beginning of the string (see
Section 9.7.3.5 for how this differs from *)
\m matches only at the beginning of a word
\M matches only at the end of a word
\y matches only at the beginning or end of a word
\Y matches only at a point that is not the beginning or
end of a word
\2Z matches only at the end of the string (see Section
9.7.3.5 for how this differs from $)

A word is defined as in the specification of [ [:<:]]

within bracket expressions.

Table 9-18. Regular Expression Back References

and [ [:>:]] above. Constraint escapes are illegal

Escape Description

\m (where m is a nonzero digit) a back reference to
the m’th subexpression

\mnn (where m is a nonzero digit, and nn is some more

digits, and the decimal value mnn is not greater
than the number of closing capturing parentheses
seen so far) a back reference to the mnn’th
subexpression

Note: There is an inherent historical ambiguity between octal character-entry escapes and back ref-
erences, which is resolved by heuristics, as hinted at above. A leading zero always indicates an octal
escape. A single non-zero digit, not followed by another digit, is always taken as a back reference. A
multidigit sequence not starting with a zero is taken as a back reference if it comes after a suitable
subexpression (i.e. the number is in the legal range for a back reference), and otherwise is taken as

octal.

153



Chapter 9. Functions and Operators

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syntactic
facilities available.

Normally the flavor of RE being used is determined by regex_flavor. However, this can be overridden
by a director prefix. If an RE begins with x««:, the rest of the RE is taken as an ARE regardless of
regex_flavor. If an RE begins with xxx=, the rest of the RE is taken to be a literal string, with all
characters considered ordinary characters.

An ARE may begin with embedded options: a sequence (?xyz) (where xyz is one or more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously determined
options (including both the RE flavor and case sensitivity). The available option letters are shown in Table
9-19.

Table 9-19. ARE Embedded-Option Letters

Option Description

b rest of RE is a BRE

c case-sensitive matching (overrides operator type)

e rest of RE is an ERE

i case-insensitive matching (see Section 9.7.3.5)
(overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

p partial newline-sensitive matching (see Section
9.7.3.5)

q rest of RE is a literal (“quoted”) string, all
ordinary characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

W inverse partial newline-sensitive (“weird”)

matching (see Section 9.7.3.5)

x expanded syntax (see below)

Embedded options take effect at the ) terminating the sequence. They may appear only at the start of an
ARE (after the »»* : director if any).

In addition to the usual (tight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space characters in
the RE are ignored, as are all characters between a # and the following newline (or the end of the RE).
This permits paragraphing and commenting a complex RE. There are three exceptions to that basic rule:

« a white-space character or # preceded by \ is retained
« white space or # within a bracket expression is retained

« white space and comments cannot appear within multicharacter symbols, such as (?:

154



Chapter 9. Functions and Operators

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence (2#ttt) (where ttt is any text not con-
taining a ) ) is a comment, completely ignored. Again, this is not allowed between the characters of multi-
character symbols, like (2:. Such comments are more a historical artifact than a useful facility, and their
use is deprecated; use the expanded syntax instead.

None of these metasyntax extensions is available if an initial «x»= director has specified that the user’s
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the one
starting earliest in the string. If the RE could match more than one substring starting at that point, either
the longest possible match or the shortest possible match will be taken, depending on whether the RE is
greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

+ Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

+ Adding parentheses around an RE does not change its greediness.

« A quantified atom with a fixed-repetition quantifier ({m} or {m}?) has the same greediness (possibly
none) as the atom itself.

+ A quantified atom with other normal quantifiers (including {m, n} with m equal to n) is greedy (prefers
longest match).

+ A quantified atom with a non-greedy quantifier (including {m, n}? with m equal to n) is non-greedy
(prefers shortest match).

« A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

« An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done in
such a way that the branch, or whole RE, matches the longest or shortest possible substring as a whole.
Once the length of the entire match is determined, the part of it that matches any particular subexpression
is determined on the basis of the greediness attribute of that subexpression, with subexpressions starting
earlier in the RE taking priority over ones starting later.

An example of what this means:
SELECT SUBSTRING (’XY1234Z’, 'Y*([0-9]1{1,3})");
Result: 123

SELECT SUBSTRING (’XY1234z’, "Yx?2([0-91{1,3})");
Result: 1

155



Chapter 9. Functions and Operators

In the first case, the RE as a whole is greedy because v+ is greedy. It can match beginning at the v, and it
matches the longest possible string starting there, i.e., Y123. The output is the parenthesized part of that,
or 123. In the second case, the RE as a whole is non-greedy because Y« ? is non-greedy. It can match
beginning at the v, and it matches the shortest possible string starting there, i.e., Y1. The subexpression
[0-91{1, 3} is greedy but it cannot change the decision as to the overall match length; so it is forced to
match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE. The
attributes assigned to the subexpressions only affect how much of that match they are allowed to “eat”
relative to each other.

The quantifiers {1, 1} and {1, 1} 2 can be used to force greediness or non-greediness, respectively, on a
subexpression or a whole RE.

Match lengths are measured in characters, not collating elements. An empty string is considered
longer than no match at all. For example: bbx matches the three middle characters of abbbc;
(week |wee) (night |knights) matches all ten characters of weeknights; when (. ) .* is matched
against abc the parenthesized subexpression matches all three characters; and when (ax) » is matched
against bc both the whole RE and the parenthesized subexpression match an empty string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside
a bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g. x
becomes [xX]. When it appears inside a bracket expression, all case counterparts of it are added to the
bracket expression, e.g. [x] becomes [xX] and [~x] becomes ["xX].

If newline-sensitive matching is specified, . and bracket expressions using ~ will never match the newline
character (so that matches will never cross newlines unless the RE explicitly arranges it) and ~and $ will
match the empty string after and before a newline respectively, in addition to matching at beginning and
end of string respectively. But the ARE escapes \A and \z continue to match beginning or end of string
only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with newline-
sensitive matching, but not ~ and $.

If inverse partial newline-sensitive matching is specified, this affects ~ and $ as with newline-sensitive
matching, but not . and bracket expressions. This isn’t very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs intended to
be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant implementation
can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX ERE:s is that \ does not lose its
special significance inside bracket expressions. All other ARE features use syntax which is illegal or
has undefined or unspecified effects in POSIX EREs; the » =« syntax of directors likewise is outside the
POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up, and a
few Perl extensions are not present. Incompatibilities of note include \b, \B, the lack of special treatment
for a trailing newline, the addition of complemented bracket expressions to the things affected by newline-

156



Chapter 9. Functions and Operators

sensitive matching, the restrictions on parentheses and back references in lookahead constraints, and the
longest/shortest-match (rather than first-match) matching semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4 releases

of PostgreSQL:

« In AREs, \ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a problem
because there was no reason to write such a sequence in earlier releases.

« In AREs, \ remains a special character within [], so a literal \ within a bracket expression must be

written \\.

While these differences are unlikely to create a problem for most applications, you can avoid them if

necessary by setting regex_flavor to extended.

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects. |, +, and ? are ordinary characters and there is no equivalent
for their functionality. The delimiters for bounds are \ { and \}, with { and } by themselves ordinary
characters. The parentheses for nested subexpressions are \ ( and \), with ( and ) by themselves ordinary
characters. ~ is an ordinary character except at the beginning of the RE or the beginning of a parenthe-
sized subexpression, $ is an ordinary character except at the end of the RE or the end of a parenthesized
subexpression, and « is an ordinary character if it appears at the beginning of the RE or the beginning
of a parenthesized subexpression (after a possible leading ). Finally, single-digit back references are
available, and \< and \> are synonyms for [[:<:]] and [[:>:]] respectively; no other escapes are

available.

9.8. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted strings
to specific data types. Table 9-20 lists them. These functions all follow a common calling convention: the
first argument is the value to be formatted and the second argument is a template that defines the output

or input format.

The to_timestamp function can also take a single double precision argument to convert from
Unix epoch to timestamp with time zone. (Integer Unix epochs are implicitly cast to double

precision.)

Table 9-20. Formatting Functions

Function

Return Type

Description

Example

to_char (timestamp,

text)

text

convert time stamp to
string

to_char (current_tim

"HH12:MI:SS')

157

estamp,



Chapter 9. Functions and Operators

Function

Return Type

Description Example

to_char (interval, text convert interval to string | to_char (interval
text) ’15h 2m 12s’,
"HH24:MI:SS’)
to_char (int, text) text convert integer to string | to_char (125,
79997)
to_char (double text convert real/double to_char(125.8::real
precision, text) precision to string 1999D9")
to_char (numeric, text convert numeric to to_char (-125.8,
text) string 7 999D995")
to_date (text, text) |date convert string to date to_date (05 Dec 200

"DD Mon YYYY')

to_timestamp (text,

timestamp with

convert string to time to_timestamp (' 05 De

text) time zone stamp DD Mon YYYY')
to_timestamp (double |timestamp with convert UNIX epochto |to_timestamp (200120
precision) time zone time stamp

to_number (text,

text)

numeric

convert string to to_number ('12,454.8

numeric 7 99G999D9S")

In an output template string (for to_char), there are certain patterns that are recognized and replaced
with appropriately-formatted data from the value to be formatted. Any text that is not a template pattern
is simply copied verbatim. Similarly, in an input template string (for anything but to_char), template
patterns identify the parts of the input data string to be looked at and the values to be found there.

Table 9-21 shows the template patterns available for formatting date and time values.

Table 9-21. Template Patterns for Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

MI minute (00-59)

SS second (00-59)

MS millisecond (000-999)

Us microsecond (000000-999999)
SSss seconds past midnight (0-86399)

AMOrA.M. orPpMoOr P .M.

meridian indicator (uppercase)

amoOra.m. OrpmOr p.m.

meridian indicator (lowercase)

Y, YYy year (4 and more digits) with comma
YYYY year (4 and more digits)

YYY last 3 digits of year

Yy last 2 digits of year

158

0,

c 2000",

400)



Chapter 9. Functions and Operators

Pattern Description

Y last digit of year

IYYY ISO year (4 and more digits)
IYY last 3 digits of ISO year

1Y last 2 digits of ISO year

I last digits of ISO year

BCorB.C. OrADOrA.D.

era indicator (uppercase)

bcorb.c.oradora.d.

era indicator (lowercase)

MONTH full uppercase month name (blank-padded to 9
chars)

Month full mixed-case month name (blank-padded to 9
chars)

month full lowercase month name (blank-padded to 9
chars)

MON abbreviated uppercase month name (3 chars)

Mon abbreviated mixed-case month name (3 chars)

mon abbreviated lowercase month name (3 chars)

MM month number (01-12)

DAY full uppercase day name (blank-padded to 9 chars)

Day full mixed-case day name (blank-padded to 9
chars)

day full lowercase day name (blank-padded to 9 chars)

DY abbreviated uppercase day name (3 chars)

Dy abbreviated mixed-case day name (3 chars)

dy abbreviated lowercase day name (3 chars)

DDD day of year (001-366)

DD day of month (01-31)
day of week (1-7; Sunday is 1)

W week of month (1-5) (The first week starts on the
first day of the month.)

WW week number of year (1-53) (The first week starts
on the first day of the year.)

W ISO week number of year (The first Thursday of
the new year is in week 1.)

cc century (2 digits)

J Julian Day (days since January 1, 4712 BC)
quarter

RM month in Roman numerals (I-XII; [=January)
(uppercase)

rm month in Roman numerals (i-xii; i=January)

(lowercase)

159




Chapter 9. Functions and Operators

Pattern Description
TZ time-zone name (uppercase)
tz time-zone name (lowercase)

Certain modifiers may be applied to any template pattern to alter its behavior. For example, FMMonth is
the Month pattern with the ¥FM modifier. Table 9-22 shows the modifier patterns for date/time formatting.

Table 9-22. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example

FM prefix fill mode (suppress padding FMMonth
blanks and zeroes)

TH suffix uppercase ordinal number suffix |DDTH

th suffix lowercase ordinal number suffix |DDth

FX prefix fixed format global option (see FX Month DD Day
usage notes)

Sp suffix spell mode (not yet DDSP
implemented)

Usage notes for date/time formatting:

« FM suppresses leading zeroes and trailing blanks that would otherwise be added to make the output of a
pattern be fixed-width.

+ to_timestamp and to_date skip multiple blank spaces in the input string if the Fx option is not used.
Fx must be specified as the first item in the template. For example to_timestamp (' 2000 JUN’,
’YYYY MON’) is correct, but to_timestamp (/2000 JUN’, ’'FXYYYY MON’) returns an error,
because to_timestamp expects one space only.

+ Ordinary text is allowed in to_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains pattern key words. For
example, in ' "Hello Year "YYYY’,the vYYY will be replaced by the year data, but the single Y in
Year will not be.

« If you want to have a double quote in the output you must precede it with a backslash, for example
"\N\"YYYYy Month\\"’. (Two backslashes are necessary because the backslash already has a special
meaning in a string constant.)

« The vvvy conversion from string to timestamp or date has a restriction if you use a year with
more than 4 digits. You must use some non-digit character or template after YYYYy, otherwise the
year is always interpreted as 4 digits. For example (with the year 20000): to_date (' 200001131”,
*yyyyMMDD”’ ) will be interpreted as a 4-digit year; instead use a non-digit separator after the year, like
to_date(’20000-1131", ’YYYY-MMDD’) or to_date (' 20000Nov31l’, ’YYYYMonDD').

+ In conversions from string to timestamp or date, the CC field is ignored if there is a YYY, YYYY or
Y, YYY field. If cc is used with YY or Y then the year is computed as (CC-1) x100+YY.

» Millisecond (Ms) and microsecond (US) values in a conversion from string to t imestamp are used as
part of the seconds after the decimal point. For example to_timestamp (' 12:3’, ’SS:MS’) isnot3

160



Chapter 9. Functions and Operators

milliseconds, but 300, because the conversion counts it as 12 + 0.3 seconds. This means for the format
SS:Ms, the input values 12:3, 12:30, and 12:300 specify the same number of milliseconds. To get
three milliseconds, one must use 12 : 003, which the conversion counts as 12 + 0.003 = 12.003 seconds.

Here is a more complex example: to_timestamp(’15:12:02.020.001230",
"HH:MI:SS.MS.US’) is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 microseconds
=2.021230 seconds.

+ to_char’s day of the week numbering (see the D’ formatting pattern) is different from that of the
extract function.

Table 9-23 shows the template patterns available for formatting numeric values.

Table 9-23. Template Patterns for Numeric Formatting

Pattern Description

9 value with the specified number of digits

0 value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

MI minus sign in specified position (if number < 0)
PL plus sign in specified position (if number > 0)
SG plus/minus sign in specified position

RN roman numeral (input between 1 and 3999)
THoOr th ordinal number suffix

\Y shift specified number of digits (see notes)
EEEE scientific notation (not implemented yet)

Usage notes for numeric formatting:

+ A sign formatted using SG, PL, or MI is not anchored to the number; for example, to_char (-12,
759999") produces © -12’,but to_char(-12, 'MI9999’) produces ‘- 12’. The Oracle im-
plementation does not allow the use of MI ahead of 9, but rather requires that 9 precede MI.

« 9 results in a value with the same number of digits as there are 9s. If a digit is not available it outputs a
space.

« TH does not convert values less than zero and does not convert fractional numbers.

+ PL, SG, and TH are PostgreSQL extensions.

161



Chapter 9. Functions and Operators

« v effectively multiplies the input values by 10~ n, where n is the number of digits following V. to_char
does not support the use of v combined with a decimal point. (E.g., 99.9v99 is not allowed.)

Table 9-24 shows some examples of the use of the to_char function.

Table 9-24. to_char Examples

Expression

Result

to_char (current_timestamp,
"Day, DD HH12:MI:SS’)

"Tuesday , 06 05:39:18"

to_char (current_timestamp,

’FMDay, FMDD

HH12:MI:SS’)

"Tuesday, 6 05:39:18’

to_char(-0.1, 799.99") T -.10"
to_char(-0.1, "FM9.99") r—.1r
to_char (0.1, "0.9") 0.1’
to_char (12, "9990999.9") ! 0012.0"
to_char (12, 'FM9990999.9") '0012."
to_char (485, 7999") r 4857
to_char (=485, '999') " -485"
to_char (485, "9 9 97) ' 4 8 5
to_char (1485, '9,999") ' 1,485
to_char (1485, '9G999') 1 485’
to_char(148.5, 7999.999") ' 148.500
to_char(148.5, ’'FM999.999") 7148.57
to_char(148.5, ’'FM999.990") 7148.500
to_char(148.5, 7999D999') ' 148,500

to_char (3148.5, ’9G999D999")

' 3 148,500

to_char (-485, '999s’) " 485-"
to_char (-485, "999MI’) "485-"
to_char (485, "999MI’) "485 '
to_char (485, ’"FM999MI’) 14857
to_char (485, "PL999") " +485"
to_char (485, ’'SG9997) "4+4857
to_char (-485, ’'SG999') ' -485"
to_char (-485, ’"9SG99’) "4-85"
to_char (-485, "999PR’) 1 <485>7
to_char (485, "L999') "DM 485
to_char (485, "RN’) ! CDLXXXV’
to_char (485, 'FMRN’) " CDLXXXV'
to_char (5.2, 'FMRN’) rv’

162




Chapter 9. Functions and Operators

Expression Result

to_char (482, ’'999th’) " 482nd’

to_char (485, ’'"Good number:"999") "Good number: 485’
to_char (485.8, "Pre: 485 Post: .800’
""Pre:"999" Post:" .999')

to_char (12, ’'99v999’) ’ 12000
to_char(12.4, "99v999') 712400
to_char(12.45, 799V9’) ’ 1257

9.9. Date/Time Functions and Operators

Table 9-26 shows the available functions for date/time value processing, with details appearing in the
following subsections. Table 9-25 illustrates the behaviors of the basic arithmetic operators (+, *, etc.).
For formatting functions, refer to Section 9.8. You should be familiar with the background information on
date/time data types from Section 8.5.

All the functions and operators described below that take t ime or t imestamp inputs actually come in two
variants: one that takes time with time zone Or timestamp with time zone, and one that takes
time without time zone or timestamp without time zone. For brevity, these variants are not
shown separately. Also, the + and » operators come in commutative pairs (for example both date + integer
and integer + date); we show only one of each such pair.

Table 9-25. Date/Time Operators

Operator Example Result

+ date ’2001-09-28" + date ’2001-10-05"
integer 7’

+ date 72001-09-28" + timestamp "2001-09-28
interval 1 hour’ 01:00"

+ date ’2001-09-28’" + time |timestamp ’2001-09-28
703:00" 03:00"

+ interval '1 day’ + interval ’1 day 01:00’
interval ’1 hour’

+ timestamp "2001-09-28 timestamp "2001-09-29
01:00" + interval ’23 00:00"
hours’

+ time ’01:00" + interval time 704:00'
"3 hours’

- - interval ’23 hours’ interval "-23:00'

- date 72001-10-01" - date |integer '3’
72001-09-28"

- date "2001-10-01" - date "2001-09-24"
integer 7’

163




Chapter 9. Functions and Operators

Operator Example Result

- date 72001-09-28" - timestamp 72001-09-27
interval ’1 hour’ 23:00

- time 705:00" - time interval 702:00'
703:00"

- time ’05:00" - interval time 703:00"
"2 hours’

- timestamp 2001-09-28 timestamp "2001-09-28
23:00” - interval ’23 00:00"
hours’

- interval 1 day’ - interval ’723:00
interval ’1 hour’

- timestamp 2001-09-29 interval ’1 day 15:00’
03:00" - timestamp
72001-09-27 12:00’

* interval ’1 hour’ = interval "03:30'
double precision ’3.5’

/ interval ’1 hour’ / interval 700:40"
double precision ’1.5'

Table 9-26. Date/Time Functions

Function Return Type Description Example Result
age (timestamp, interval Subtract age (timestamp 43 years 9
timestamp) arguments, r2001-04-10", mons 27 days
producing a timestamp
“symbolic” result |’1957-06-13")
that uses years and
months
age (timestamp) interval Subtract from age (timestamp |43 years 8
current_date 71957-06-13") mons 3 days
current_date date Today’s date; see
Section 9.9.4
current_time time with time |Time of day; see
zone Section 9.9.4
current_timestamgtimestamp with |Date and time; see
time zone Section 9.9.4
date_part (text, |double Get subfield date_part (" hour|'20
timestamp) precision (equivalent to timestamp
extract); see 72001-02-16
Section 9.9.1 20:38:40")

164




Chapter 9. Functions and Operators

Function Return Type Description Example Result
date_part (text, |double Get subfield date_part ('month3,
interval) precision (equivalent to interval ’2
extract); see years 3
Section 9.9.1 months’)
date_trunc (text, |timestamp Truncate to date_trunc (' houZG01-02-16
timestamp) specified precision; | t imestamp 20:00:00
see also Section 72001-02-16
99.2 20:38:40")
extract (field double Get subfield; see extract (hour 20
from timestamp) |precision Section 9.9.1 from timestamp
72001-02-16
20:38:40")
extract (field double Get subfield; see extract (month |3
from interval) |precision Section 9.9.1 from interval
"2 years 3
months’)
isfinite (timestamppolean Test for finite time |isfinite (timestlampue
stamp (notequal to | 2001-02-16
infinity) 21:28:30")
isfinite (intervalboolean Test for finite isfinite (intervialrue
interval "4 hours’)
justify_hours (intdmzdival Adjust interval so | justify_hours (ifntedaral
24-hour time ’24 hours’)
periods are
represented as days
justify_days (intenveddrval Adjust interval so | justify_days (intknmwvaith

30-day time
periods are
represented as
months

730 days’)

localtime

time

Time of day; see
Section 9.9.4

localtimestamp

timestamp

Date and time; see
Section 9.9.4

now ()

timestamp with

time zone

Current date and
time (equivalent to
current_timesta]

see Section 9.9.4

p);

timeofday ()

text

Current date and
time; see Section
994

If you are using both justify_hours and justify_days, itis best to use justify_hours first so any

165




Chapter 9. Functions and Operators

additional days will be included in the justify_days calculation.

In addition to these functions, the SQL OVERLAPS operator is supported:

(startl, endl) OVERLAPS (start2, end2)
(startl, lengthl) OVERLAPS (start2, length2)

This expression yields true when two time periods (defined by their endpoints) overlap, false when they
do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a date, time,
or time stamp followed by an interval.

SELECT (DATE ’'2001-02-16’, DATE ’2001-12-21") OVERLAPS
(DATE "2001-10-30’", DATE ’2002-10-30");

Result: true

SELECT (DATE '2001-02-16’", INTERVAL ’'100 days’) OVERLAPS
(DATE ’2001-10-30’, DATE ’2002-10-30");

Result: false

When adding an interval value to (or subtracting an interval value from) a timestamp with
time zone value, the days component advances (or decrements) the date of the timestamp with
time zone by the indicated number of days. Across daylight saving time changes (with the session time
zone set to a time zone that recognizes DST), this means interval ’1 day’ does not necessarily
equal interval ’24 hours’. For example, with the session time zone set to CST7CDT, timestamp
with time zone ’2005-04-02 12:00-07’ + interval '1 day’ will produce timestamp
with time zone ’2005-04-03 12:00-06’, while adding interval ’24 hours’ to the same
initial timestamp with time zone produces timestamp with time zone ’2005-04-03
13:00-06", as there is a change in daylight saving time at 2005-04-03 02:00 in time zone CST7CDT.

9.9.1. EXTRACT, date_part

EXTRACT (field FROM source)

The extract function retrieves subfields such as year or hour from date/time values. source must be
a value expression of type timestamp, time, or interval. (Expressions of type date will be cast to
timestamp and can therefore be used as well.) field is an identifier or string that selects what field to
extract from the source value. The extract function returns values of type double precision. The
following are valid field names:

century
The century

SELECT EXTRACT (CENTURY FROM TIMESTAMP ’'2000-12-16 12:21:137);
Result: 20
SELECT EXTRACT (CENTURY FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 21

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time. This
definition applies to all Gregorian calendar countries. There is no century number 0, you go from -1
to 1. If you disagree with this, please write your complaint to: Pope, Cathedral Saint-Peter of Roma,
Vatican.

166



Chapter 9. Functions and Operators

PostgreSQL releases before 8.0 did not follow the conventional numbering of centuries, but just
returned the year field divided by 100.

day
The day (of the month) field (1 - 31)

SELECT EXTRACT (DAY FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 16

decade

The year field divided by 10

SELECT EXTRACT (DECADE FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 200

dow
The day of the week (0 - 6; Sunday is 0) (for t imestamp values only)

SELECT EXTRACT (DOW FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 5

Note that extract’s day of the week numbering is different from that of the t o_char function.
doy
The day of the year (1 - 365/366) (for t imestamp values only)

SELECT EXTRACT (DOY FROM TIMESTAMP '2001-02-16 20:38:407);
Result: 47

epoch

For date and timestamp values, the number of seconds since 1970-01-01 00:00:00-00 (can be
negative); for interval values, the total number of seconds in the interval

SELECT EXTRACT (EPOCH FROM TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40-08");
Result: 982384720

SELECT EXTRACT (EPOCH FROM INTERVAL ’5 days 3 hours’);
Result: 442800
Here is how you can convert an epoch value back to a time stamp:
SELECT TIMESTAMP WITH TIME ZONE ’epoch’ + 982384720 x INTERVAL ’'1 second’;
hour
The hour field (0 - 23)

SELECT EXTRACT (HOUR FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 20

microseconds

The seconds field, including fractional parts, multiplied by 1 000 000. Note that this includes full
seconds.

SELECT EXTRACT (MICROSECONDS FROM TIME "17:12:28.5");
Result: 28500000

167



Chapter 9. Functions and Operators

millennium

The millennium

SELECT EXTRACT (MILLENNIUM FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 3

Years in the 1900s are in the second millennium. The third millennium starts January 1, 2001.

PostgreSQL releases before 8.0 did not follow the conventional numbering of millennia, but just
returned the year field divided by 1000.

milliseconds
The seconds field, including fractional parts, multiplied by 1000. Note that this includes full seconds.

SELECT EXTRACT (MILLISECONDS FROM TIME '17:12:28.5");
Result: 28500

minute

The minutes field (0 - 59)

SELECT EXTRACT (MINUTE FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 38

month

For t imestamp values, the number of the month within the year (1 - 12) ; for interval values the
number of months, modulo 12 (0 - 11)

SELECT EXTRACT (MONTH FROM TIMESTAMP ’'2001-02-16 20:38:407);
Result: 2

SELECT EXTRACT (MONTH FROM INTERVAL ’2 years 3 months’);
Result: 3

SELECT EXTRACT (MONTH FROM INTERVAL ’2 years 13 months’);
Result: 1

quarter
The quarter of the year (1 - 4) that the day is in (for t imestamp values only)

SELECT EXTRACT (QUARTER FROM TIMESTAMP ’2001-02-16 20:38:407);
Result: 1

second
The seconds field, including fractional parts (0 - 59")

SELECT EXTRACT (SECOND FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 40

SELECT EXTRACT (SECOND FROM TIME ’17:12:28.57);
Result: 28.5
timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones east
of UTC, negative values to zones west of UTC.

60 if leap seconds are implemented by the operating system

168



Chapter 9. Functions and Operators

timezone_hour

The hour component of the time zone offset
timezone_minute

The minute component of the time zone offset
week

The number of the week of the year that the day is in. By definition (ISO 8601), the first week of a
year contains January 4 of that year. (The ISO-8601 week starts on Monday.) In other words, the first
Thursday of a year is in week 1 of that year. (for t imestamp values only)

Because of this, it is possible for early January dates to be part of the 52nd or 53rd week of the
previous year. For example, 2005-01-01 is part of the 53rd week of year 2004, and 2006-01-01 is
part of the 52nd week of year 2005.

SELECT EXTRACT (WEEK FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 7

year

The year field. Keep in mind there is no 0 AD, so subtracting BC years from AD years should be done
with care.

SELECT EXTRACT (YEAR FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 2001

The extract function is primarily intended for computational processing. For formatting date/time val-
ues for display, see Section 9.8.

The date_part function is modeled on the traditional Ingres equivalent to the SQL-standard function

extract:
date_part (' field’, source)

Note that here the field parameter needs to be a string value, not a name. The valid field names for
date_part are the same as for extract.

SELECT date_part (’day’, TIMESTAMP ’2001-02-16 20:38:40");
Result: 16

SELECT date_part ("hour’, INTERVAL ’4 hours 3 minutes’);
Result: 4

9.9.2. date_trunc

The function date_trunc is conceptually similar to the t runc function for numbers.

date_trunc (’ field’, source)

source is a value expression of type timestamp or interval. (Values of type date and time are cast
automatically, to t imestamp or interval respectively.) field selects to which precision to truncate the

169



Chapter 9. Functions and Operators

input value. The return value is of type timestamp or interval with all fields that are less significant
than the selected one set to zero (or one, for day and month).

Valid values for field are:

microseconds
milliseconds
second
minute

hour

day

week

month

year

decade
century

millennium

Examples:

SELECT date_trunc(’hour’,
2001-02-16 20:00:00

Result:

SELECT date_trunc (’'year’,
2001-01-01 00:00:00

Result:

9.9.3. AT TIME ZONE

TIMESTAMP

TIMESTAMP

72001-02-16 20:38:40");

72001-02-16 20:38:40");

The AT TIME ZONE construct allows conversions of time stamps to different time zones. Table 9-27

shows its variants.

Table 9-27. AT TIME ZONE Variants

Expression

Return Type

Description

timestamp without time zone

AT TIME ZONE =zone

timestamp with time zone

Treat given time stamp without
time zone as located in the
specified time zone

timestamp with time zone

AT TIME ZONE zone

timestamp without time

zone

Convert given time stamp with
time zone to the new time zone

time with time zone AT

TIME ZONE zone

time with time zone

Convert given time with time
zone to the new time zone

In these expressions, the desired time zone zone can be specified either as a text string (e.g., ' PST’ ) or
as an interval (e.g., INTERVAL ’-08:00"). In the text case, the available zone names are those shown in

either Table B-6 or Table B-4.

170




Chapter 9. Functions and Operators

Examples (supposing that the local time zone is PST8PDT):

SELECT TIMESTAMP '2001-02-16 20:38:40’ AT TIME ZONE ’MST’;
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40-05" AT TIME ZONE ’'MST’;
Result: 2001-02-16 18:38:40

The first example takes a time stamp without time zone and interprets it as MST time (UTC-7), which
is then converted to PST (UTC-8) for display. The second example takes a time stamp specified in EST
(UTC-5) and converts it to local time in MST (UTC-7).

The function timezone (zone, timestamp) is equivalent to the SQL-conforming construct timestamp
AT TIME ZONE zone.

9.9.4. Current Date/Time

The following functions are available to obtain the current date and/or time:

CURRENT_DATE

CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME (precision)
CURRENT_TIMESTAMP (precision)
LOCALTIME

LOCALTIMESTAMP

LOCALTIME (precision)
LOCALTIMESTAMP (precision)

CURRENT_TIME and CURRENT_TIMESTAMP deliver values with time zone; LOCALTIME and
LOCALTIMESTAMP deliver values without time zone.

CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMP can optionally be given a
precision parameter, which causes the result to be rounded to that many fractional digits in the seconds
field. Without a precision parameter, the result is given to the full available precision.

Note: Prior to PostgreSQL 7.2, the precision parameters were unimplemented, and the result was
always given in integer seconds.

Some examples:

SELECT CURRENT_TIME;
Result: 14:39:53.662522-05

SELECT CURRENT_DATE;
Result: 2001-12-23

SELECT CURRENT_TIMESTAMP;
Result: 2001-12-23 14:39:53.662522-05

171



Chapter 9. Functions and Operators

SELECT CURRENT_TIMESTAMP (2) ;
Result: 2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
Result: 2001-12-23 14:39:53.662522

The function now () is the traditional PostgreSQL equivalent to CURRENT_TIMESTAMP.

It is important to know that CURRENT_TIMESTAMP and related functions return the start time of the current
transaction; their values do not change during the transaction. This is considered a feature: the intent is to
allow a single transaction to have a consistent notion of the “current” time, so that multiple modifications
within the same transaction bear the same time stamp.

Note: Other database systems may advance these values more frequently.

There is also the function timeofday () which returns the wall-clock time and advances during transac-
tions. For historical reasons timeofday () returns a text string rather than a t imestamp value:

SELECT timeofday();
Result: Sat Feb 17 19:07:32.000126 2001 EST

All the date/time data types also accept the special literal value now to specify the current date and time.
Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now () ;
SELECT TIMESTAMP ’'now’; —— incorrect for use with DEFAULT

Tip: You do not want to use the third form when specifying a bEFAULT clause while creating a table.
The system will convert now to a timestamp as soon as the constant is parsed, so that when the
default value is needed, the time of the table creation would be used! The first two forms will not
be evaluated until the default value is used, because they are function calls. Thus they will give the
desired behavior of defaulting to the time of row insertion.

9.10. Geometric Functions and Operators

The geometric types point, box, 1seg, line, path, polygon, and circle have a large set of native
support functions and operators, shown in Table 9-28, Table 9-29, and Table 9-30.

172



Chapter 9. Functions and Operators

Caution

Note that the “same as” operator, ~=, represents the usual notion of equality for the
point, box, polygon, and circle types. Some of these types also have an = op-
erator, but = compares for equal areas only. The other scalar comparison operators
(<= and so on) likewise compare areas for these types.

Table 9-28. Geometric Operators

Operator Description Example

+ Translation box ' ((0,0),(1,1))" +
point " (2.0,0)’

- Translation box ' ((0,0),(1,1))" -
point ' (2.0,0)"

* Scaling/rotation box ' ((0,0),(1,1))" =
point ' (2.0,0)"

/ Scaling/rotation box ' ((0,0),(2,2))" /
point ' (2.0,0)’

# Point or box of intersection (1,1, (-1,1)) " #
T((1,1),(=1,-1))’

# Number of points in path or # 7((1,0),(0,1),(-1,0))"

polygon

@-@ Length or circumference @-Q@ path 7 ((0,0), (1,0))"

Q@ Center @@ circle 7 ((0,0),10)"

## Closest point to first operand on | point ’ (0,0)’ ## lseg

second operand " ((2,0),(0,2))"

<-> Distance between circle 7 ((0,0),1)" <->
circle 7 ((5,0),1)"

&& Overlaps? box ' ((0,0), (1,1))’ &&
box " ((0,0), (2,2))"

<< Is strictly left of? circle 7 ((0,0),1)" <<
circle ' ((5,0),1)"

>> Is strictly right of? circle 7 ((5,0),1)" >>
circle " ((0,0),1)’

&< Does not extend to the right of? |box 7 ((0,0), (1,1))’ &<
box " ((0,0),(2,2))’

&> Does not extend to the left of? box ' ((0,0), (3,3))" &>
box ' ((0,0), (2,2))"

<< Is strictly below? box ' ((0,0), (3,3))" <<|
box " ((3,4), (5,5))"

| >> Is strictly above? box ' ((3,4),(5,5))" |>>
box ' ((0,0), (3,3))"

173




Chapter 9. Functions and Operators

Operator Description Example

&< | Does not extend above? box ' ((0,0), (1,1))’ &<|
box ' ((0,0), (2,2))"

| &> Does not extend below? box ' ((0,0), (3,3))" |&>
box " ((0,0), (2,2))"

<A Is below (allows touching)? circle 7 ((0,0),1)" <»
circle " ((0,5),1)"

>n Is above (allows touching)? circle 7 ((0,5),1)" >»
circle " ((0,0),1)"

4 Intersects? lseg ' ((-1,0),(1,0))" 2#
box " ((-2,-2),(2,2))"’

?2— Is horizontal? ?— lseg ' ((=1,0),(1,0))"

?- Are horizontally aligned? point ' (1,0)’ ?- point
" (0,0)’

2] Is vertical? ?] lseg ' ((-1,0),(1,0))’

2| Are vertically aligned? point ’ (0,1)’ 2| point
' (0,0)"

?2- Is perpendicular? lseg ' ((0,0),(0,1))" 2-
lseg ' ((0,0),(1,0))"

211 Are parallel? lseg ' ((-1,0),(1,0))"
?1] lseg
f((=1,2),(1,2))"

~ Contains? circle 7 ((0,0),2)" ~
point " (1,1)’

@ Contained in or on? point 7 (1,1)’ @ circle
" ((0,0),2)"

~= Same as? polygon ’ ((0,0), (1,1))"
~= polygon
" ((1,1),(0,0))"

Table 9-29. Geometric Functions
Function Return Type Description Example
area (object) double precision area area (box
" ((0,0),(1,1))")
center (object) point center center (box

" ((0,0),(1,2))")

diameter (circle)

double precision

diameter of circle

diameter (circle
" ((0,0),2.0)")

height (box)

double precision

vertical size of box

height (box
"((0,0),(1,1))")

174




Chapter 9. Functions and Operators

Function

Return Type

Description

Example

isclosed (path) boolean a closed path? isclosed (path
"((0,0),(1,1),(2,0)
isopen (path) boolean an open path? isopen (path

"1(0,0),(1,1),(2,0)

length (object)

double precision

length

length (path
"((=1,0),(1,0))")

npoints (path) int number of points npoints (path
"[(0,0),(1,1),(2,0)
npoints (polygon) int number of points npoints (polygon
" ((1,1),(0,0))")
pclose (path) path convert path to closed pclose (path
"[(0,0),(1,1),(2,0)
popen (path) path convert path to open popen (path

" ((0,0),(1,1),(2,0)

radius (circle)

double precision

radius of circle

radius (circle
"((0,0),2.0)")

width (box)

double precision

horizontal size of box

width (box
" ((0,0),(1,1))")

Table 9-30. Geometric Type Conversion Functions

Function Return Type Description Example

box (circle) box circle to box box (circle
"((0,0),2.0)")

box (point, point) box points to box box (point ’ (0,0)’,
point " (1,1)")

box (polygon) box polygon to box box (polygon
"((0,0),(1,1),(2,0)

circle (box) circle box to circle circle (box
" ((0,0),(1,1))")

circle (point, double|circle center and radius to circle (point

precision) circle r(0,0)", 2.0)

circle (polygon) circle polygon to circle circle (polygon
"((0,0),(1,1),(2,0)

1seg (box) lseg box diagonal to line lseg (box

segment

" ((-1,0),(1,0))")

175



Chapter 9. Functions and Operators

Function Return Type Description Example
lseg (point, point) lseg points to line segment lseg (point
" (-1,0)", point
"(1,0)")
path (polygon) point polygon to path path (polygon
"((0,0),(1,1),(2,0)
point (double point construct point point (23.4, -44.5)
precision, double
precision)
point (box) point center of box point (box
" ((-1,0),(1,0))")
point (circle) point center of circle point (circle
"((0,0),2.0)")
point (1seg) point center of line segment |point (lseg
" ((-1,0),(1,0))")
point (polygon) point center of polygon point (polygon
"((0,0),(1,1),(2,0)
polygon (box) polygon box to 4-point polygon |polygon (box
" ((0,0),(1,1))")
polygon (circle) polygon circle to 12-point polygon (circle
polygon "((0,0),2.0)")
polygon (npts, polygon circle to npt s-point polygon (12, circle
circle) polygon ’((0,0),2.0)")
polygon (path) polygon path to polygon polygon (path
"((0,0),(1,1),(2,0)

It is possible to access the two component numbers of a point as though it were an array with indices
0 and 1. For example, if t .p is a point column then SELECT p[0] FROM t retrieves the X coordinate

and UPDATE t SET p[l] =

1seg may be treated as an array of two point values.

. changes the Y coordinate. In the same way, a value of type box or

The area function works for the types box, circle, and path. The area function only

works on the path data type if the points in the path are non-intersecting. For example,

the
won’t
" ((0,

path
work,

" ((0,0),(0,1),

however,

the

(2,1),(2,2),

following visually

(1,2),(1,0),

(0,0))’ ::PATH

identical path

0,0, 1n,(@1,1,(d,2),(2,2),(2,1),(1,1),(1,0),(0,0))"::PATH

will work. If the concept of an intersecting versus non-intersecting path is confusing, draw both of the

above paths side by side on a piece of graph paper.

9.11. Network Address Functions and Operators

Table 9-31 shows the operators available for the cidr and inet types. The operators <<, <<=, >>, and

176



Chapter 9. Functions and Operators

>>= test for subnet inclusion. They consider only the network parts of the two addresses, ignoring any
host part, and determine whether one network part is identical to or a subnet of the other.

Table 9-31. cidr and inet Operators

Operator Description Example

< is less than inet 7192.168.1.5" <
inet 7192.168.1.6'

<= is less than or equal inet 7192.168.1.5" <=
inet 7192.168.1.5'

= equals inet ’192.168.1.5" =
inet 7192.168.1.5'

>= is greater or equal inet 7192.168.1.5" >=
inet 7192.168.1.5'

> is greater than inet 7192.168.1.5" >
inet 7192.168.1.4’

<> is not equal inet 7192.168.1.5" <>
inet 7192.168.1.4"'

<< is contained within inet 7192.168.1.5" <<
inet 7192.168.1/24"

<<= is contained within or equals inet 7192.168.1/24' <<=
inet ’192.168.1/24"

>> contains inet 7192.168.1/24" >>
inet 7192.168.1.5'

>>= contains or equals inet 7192.168.1/247 >>=
inet 7192.168.1/24’

Table 9-32 shows the functions available for use with the cidr and inet types. The host, text, and
abbrev functions are primarily intended to offer alternative display formats. You can cast a text value to
inet using normal casting syntax: inet (expression) Of colname: :inet.

Table 9-32. cidr and inet Functions

Function Return Type Description Example Result
broadcast (inet) |inet broadcast address |broadcast (7 192.[16%2 1.6Y24/)55/2
for network
host (inet) text extract IP address |host (7192.168.1|.5924768.1.5
as text
masklen (inet) int extract netmask masklen (’192.16/824 .5/24")
length
set_masklen (inet, inet set netmask length | set_masklen (' 192L9%8.48 5/2%/16
int) for inet value 16)
netmask (inet) inet construct netmask |netmask (/' 192.168.35 5/2%./255.0

for network

177




Chapter 9. Functions and Operators

Function Return Type Description Example Result

hostmask (inet) inet construct host hostmask (7 192.1/68..230.29/30")
mask for network

network (inet) cidr extract network network (1 192.16|8L92 5/&@1/1).0/24
part of address

text (inet) text extract IP address |text (inet 192.168.1.5/32
and netmask length |7 192.168.1.5")
as text

abbrev (inet) text abbreviated display | abbrev (cidr 10.1/16
format as text ’10.1.0.0/16")

family (inet) int extract family of family (7 ::17) 6
address; 4 for
IPv4, 6 for IPv6

Table 9-33 shows the functions available for use with the macaddr type. The function trunc (macaddr)
returns a MAC address with the last 3 bytes set to zero. This can be used to associate the remaining prefix
with a manufacturer. The directory contrib/mac in the source distribution contains some utilities to
create and maintain such an association table.

Table 9-33. macaddr Functions

Function

Return Type

Description

Example Result

trunc (macaddr) macaddr

set last 3 bytes to
Zero

12:34:56:00:
cab’)

trunc (macaddr
712:34:56:78:90

00:

The macaddr type also supports the standard relational operators (>, <=, etc.) for lexicographical order-

ing.

9.12. Sequence Manipulation Functions

This section describes PostgreSQL’s functions for operating on sequence objects. Sequence objects
(also called sequence generators or just sequences) are special single-row tables created with CREATE
SEQUENCE. A sequence object is usually used to generate unique identifiers for rows of a table. The
sequence functions, listed in Table 9-34, provide simple, multiuser-safe methods for obtaining successive
sequence values from sequence objects.

Table 9-34. Sequence Functions

Function Return Type Description

nextval (regclass) bigint Advance sequence and return
new value

currval (regclass) bigint Return value most recently

obtained with nextval for
specified sequence

178

00



Chapter 9. Functions and Operators

Function Return Type Description

lastval () bigint Return value most recently
obtained with nextval

setval (regclass, bigint) bigint Set sequence’s current value
setval (regclass, bigint, bigint Set sequence’s current value and
boolean) is_calleclﬂag

The sequence to be operated on by a sequence-function call is specified by a regclass argument, which
is just the OID of the sequence in the pg_class system catalog. You do not have to look up the OID
by hand, however, since the regclass data type’s input converter will do the work for you. Just write
the sequence name enclosed in single quotes, so that it looks like a literal constant. To achieve some
compatibility with the handling of ordinary SQL names, the string will be converted to lowercase unless
it contains double quotes around the sequence name. Thus

nextval (' foo’) operates on sequence foo
nextval (' FOO’) operates on sequence foo
nextval (' "Foo"') operates on sequence Foo

The sequence name can be schema-qualified if necessary:

nextval (myschema.foo’) operates on myschema.foo
nextval (! "myschema".foo’) same as above
nextval (! foo’) searches search path for foo

See Section 8.12 for more information about regclass.

Note: Before PostgreSQL 8.1, the arguments of the sequence functions were of type text, not
regclass, and the above-described conversion from a text string to an OID value would happen
at run time during each call. For backwards compatibility, this facility still exists, but internally it is now
handled as an implicit coercion from text t0 regclass before the function is invoked.

When you write the argument of a sequence function as an unadorned literal string, it becomes a
constant of type regclass. Since this is really just an OID, it will track the originally identified sequence
despite later renaming, schema reassignment, etc. This “early binding” behavior is usually desirable
for sequence references in column defaults and views. But sometimes you will want “late binding”
where the sequence reference is resolved at run time. To get late-binding behavior, force the constant
to be stored as a text constant instead of regclass:

nextval (' foo’ : :text) foo 1is looked up at runtime

Note that late binding was the only behavior supported in PostgreSQL releases before 8.1, so you
may need to do this to preserve the semantics of old applications.

Of course, the argument of a sequence function can be an expression as well as a constant. If it is a
text expression then the implicit coercion will result in a run-time lookup.

The available sequence functions are:

179



Chapter 9. Functions and Operators

nextval

Advance the sequence object to its next value and return that value. This is done atomically: even if
multiple sessions execute nextval concurrently, each will safely receive a distinct sequence value.

currval

Return the value most recently obtained by nextval for this sequence in the current session. (An
error is reported if nextval has never been called for this sequence in this session.) Notice that
because this is returning a session-local value, it gives a predictable answer whether or not other
sessions have executed nextval since the current session did.

lastval

Return the value most recently returned by nextval in the current session. This function is identical
to currval, except that instead of taking the sequence name as an argument it fetches the value of
the last sequence that nextval was used on in the current session. It is an error to call lastval if
nextval has not yet been called in the current session.

setval

Reset the sequence object’s counter value. The two-parameter form sets the sequence’s last_value
field to the specified value and sets its is_called field to true, meaning that the next nextval
will advance the sequence before returning a value. In the three-parameter form, is_called may
be set either true or false. If it’s set to false, the next nextval will return exactly the specified
value, and sequence advancement commences with the following nextval. For example,

SELECT setval (' foo’, 42); Next nextval will return 43
SELECT setval (' foo’, 42, true); Same as above
SELECT setval (' foo’, 42, false); Next nextval will return 42

The result returned by setval is just the value of its second argument.

If a sequence object has been created with default parameters, nextval calls on it will return successive
values beginning with 1. Other behaviors can be obtained by using special parameters in the CREATE
SEQUENCE command; see its command reference page for more information.

Important: To avoid blocking of concurrent transactions that obtain numbers from the same sequence,
anextval operation is never rolled back; that is, once a value has been fetched it is considered used,
even if the transaction that did the nextval later aborts. This means that aborted transactions may
leave unused “holes” in the sequence of assigned values. setval operations are never rolled back,
either.

9.13. Conditional Expressions

This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip: If your needs go beyond the capabilities of these conditional expressions you might want to
consider writing a stored procedure in a more expressive programming language.

180



Chapter 9. Functions and Operators

9.13.1. casSE

The SQL CASE expression is a generic conditional expression, similar to if/else statements in other lan-
guages:

CASE WHEN condition THEN result
[WHEN ...]
[ELSE result]

END

CASE clauses can be used wherever an expression is valid. condition is an expression that returns a
boolean result. If the result is true then the value of the CASE expression is the result that follows the
condition. If the result is false any subsequent WHEN clauses are searched in the same manner. If no WHEN
condition is true then the value of the case expression is the result in the ELSE clause. If the ELSE
clause is omitted and no condition matches, the result is null.

An example:

SELECT » FROM test;

a
1
2
3
SELECT a,
CASE WHEN a=1 THEN ’one’
WHEN a=2 THEN ’two’
ELSE ’'other’
END
FROM test;
a | case
e
1 | one
2 | two
3 | other

The data types of all the result expressions must be convertible to a single output type. See Section 10.5
for more detail.

The following “simple” CASE expression is a specialized variant of the general form above:

CASE expression
WHEN value THEN result
[WHEN ...]
[ELSE result]

END

181



Chapter 9. Functions and Operators

The expression is computed and compared to all the value specifications in the WHEN clauses until one
is found that is equal. If no match is found, the result in the ELSE clause (or a null value) is returned.
This is similar to the switch statement in C.

The example above can be written using the simple CASE syntax:

SELECT a,
CASE a WHEN 1 THEN ’one’
WHEN 2 THEN ’two’
ELSE ’'other’
END
FROM test;

a | case
e

1 | one

2 | two

3 | other

A cASE expression does not evaluate any subexpressions that are not needed to determine the result. For
example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

9.13.2. COALESCE

COALESCE (value [, ...])

The coaLESCE function returns the first of its arguments that is not null. Null is returned only if all
arguments are null. This is often useful to substitute a default value for null values when data is retrieved
for display, for example:

SELECT COALESCE (description, short_description, ’ (none)’)

Like a CASE expression, COALESCE will not evaluate arguments that are not needed to determine the
result; that is, arguments to the right of the first non-null argument are not evaluated.

9.13.3. NULLIF
NULLIF (valuel, valueZ2)

The NULLIF function returns a null value if and only if valuel and value2 are equal. Otherwise it returns
valuel. This can be used to perform the inverse operation of the COALESCE example given above:

SELECT NULLIF (value, ' (none)’)

182



9.13.4. GREATEST and LEAST

GREATEST (value

LEAST (value

L,

L

-1)

-1

Chapter 9.

Functions and Operators

The GREATEST and LEAST functions select the largest or smallest value from a list of any number of
expressions. The expressions must all be convertible to a common data type, which will be the type of the
result (see Section 10.5 for details). NULL values in the list are ignored. The result will be NULL only if
all the expressions evaluate to NULL.

Note that GREATEST and LEAST are not in the SQL standard, but are a common extension.

9.14. Array Functions and Operators

Table 9-35 shows the operators available for array types.

Table 9-35. array Operators

ARRAY[1, 4, 3]

Operator Description Example Result

= equal ARRAY[1.1,2.1,3.1]:tnt[]
= ARRAY[1,2, 3]

<> not equal ARRAY[1,2,3] <> t
ARRAY[1,2,4]

< less than ARRAY[1,2,3] < t
ARRAY[1,2,4]

> greater than ARRAY[1,4,3] > t
ARRAY[1,2,4]

<= less than or equal ARRAY[1,2,3] <= t
ARRAY[1,2, 3]

>= greater than or equal ARRAY[1,4,3] >= t

array-to-array
concatenation

ARRAY[1,2,3] ||
ARRAY [4,5, 6]

{1,2,3,4,5,6}

array-to-array
concatenation

ARRAY[1,2,3] ||
ARRAY[[4,5,6]1,[7,8,

({1,2,3},{4,5,6}, {7
911

concatenation

| element-to-array 3 || ARRAY[4,5,6] {3,4,5,6}
concatenation
| array-to-element ARRAY [4,5,6] || 7 {4,5,6,7}

183

+8,9}}



See Section 8.10 for more details about array operator behavior.

Chapter 9. Functions and Operators

Table 9-36 shows the functions available for use with array types. See Section 8.10 for more discussion

and examples of the use of these functions.

Table 9-36. array Functions

string_to_array

(text, text)

array elements
using provided
delimiter

[

Function Return Type Description Example Result
array_cat anyarray concatenate two array_cat (ARRAY|[{1,,2 33,4, 5}
(anyarray, arrays ARRAY[4,5])
anyarray)
array_append anyarray append an element | array_append (ARRAY,[Z,,2)] ,
(anyarray, to the end of an 3)
anyelement) array
array_prepend |anyarray append an element |array_prepend (1f,{1, 2, 3}
(anyelement, to the beginning of | ARRAY [2, 3])
anyarray) an array
array_dims text returns a text array_dims (ARRAY[[1[17 R[B:]3]
(anyarray) representation of [4,5,6]1)
array’s dimensions
array_lower int returns lower array_lower (arrj@y_prepend (0,
(anyarray, int) bound of the ARRAY[1,2,31),
requested array 1)
dimension
array_upper int returns upper array_upper (ARRM [1,2,3,4],
(anyarray, int) bound of the 1)
requested array
dimension
text concatenates array |array_to_string|(BRREX{1~3
array_to_string elements using 2, 31, "~"~")
(anyarray, provided delimiter
text)
text [] splits string into string_to_array|({xxvvyyzy~zz’,

9.15. Aggregate Functions

Aggregate functions compute a single result value from a set of input values. Table 9-37 shows the built-in
aggregate functions. The special syntax considerations for aggregate functions are explained in Section
4.2.7. Consult Section 2.7 for additional introductory information.

Table 9-37. Aggregate Functions

184




Chapter 9. Functions and Operators

Function

Argument Type

Return Type

Description

avg (expression)

smallint, int,
bigint, real, double
precision, numeric

or interval

numeric for any
integer type argument,
double precision
for a floating-point
argument, otherwise the
same as the argument
data type

the average (arithmetic
mean) of all input values

bit_and (expression)

smallint, int,
bigint,orbit

same as argument data
type

the bitwise AND of all
non-null input values, or
null if none

bit_or (expression)

smallint, int,

bigint, orbit

same as argument data
type

the bitwise OR of all
non-null input values, or
null if none

bool bool true if all input values
bool_and (expression) are true, otherwise false
bool bool true if at least one input
bool_or (expression) value is true, otherwise
false
count («) bigint number of input values
count (expression) any bigint number of input values
for which the value of
expressionis not null
every (expression) bool bool equivalent to bool_and

max (expression)

any array, numeric,
string, or date/time type

same as argument type

maximum value of
expression across all
input values

min (expression)

any array, numeric,
string, or date/time type

same as argument type

minimum value of
expression across all
input values

stddev (expression)

smallint, int,
bigint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

sample standard
deviation of the input
values

sum (expression)

smallint, int,
bigint, real, double
precision, numeric,

or interval

bigint for smallint
or int arguments,
numeric for bigint
arguments, double
precision for
floating-point
arguments, otherwise
the same as the
argument data type

sum of expression
across all input values

185




Chapter 9. Functions and Operators

Function Argument Type Return Type Description
smallint, int, double precision sample variance of the

variance(expression)bigint, real, double |for floating-point input values (square of
precision, or arguments, otherwise the sample standard
numeric numeric deviation)

It should be noted that except for count, these functions return a null value when no rows are selected.
In particular, sum of no rows returns null, not zero as one might expect. The coalesce function may be
used to substitute zero for null when necessary.

Note: Boolean aggregates bool_and and bool_or correspond to standard SQL aggregates every
and any or some. As for any and some, it seems that there is an ambiguity built into the standard
syntax:

SELECT bl = ANY((SELECT b2 FROM t2 ...)) FROM tl ...;

Here any can be considered both as leading to a subquery or as an aggregate if the select expression
returns 1 row. Thus the standard name cannot be given to these aggregates.

Note: Users accustomed to working with other SQL database management systems may be surprised
by the performance of the count aggregate when it is applied to the entire table. A query like:

SELECT count () FROM sometable;

will be executed by PostgreSQL using a sequential scan of the entire table.

9.16. Subquery Expressions

This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the ex-
pression forms documented in this section return Boolean (true/false) results.

9.16.1. EXISTS
EXISTS (subgquery)

The argument of EXISTS is an arbitrary SELECT statement, or subquery. The subquery is evaluated to
determine whether it returns any rows. If it returns at least one row, the result of EXISTS is “true”; if the
subquery returns no rows, the result of EXISTS is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery.

The subquery will generally only be executed far enough to determine whether at least one row is returned,
not all the way to completion. It is unwise to write a subquery that has any side effects (such as calling
sequence functions); whether the side effects occur or not may be difficult to predict.

186



Chapter 9. Functions and Operators

Since the result depends only on whether any rows are returned, and not on the contents of those rows, the
output list of the subquery is normally uninteresting. A common coding convention is to write all EXISTS
tests in the form EXISTS (SELECT 1 WHERE ...). There are exceptions to this rule however, such as
subqueries that use INTERSECT.

This simple example is like an inner join on col2, but it produces at most one output row for each tabl
row, even if there are multiple matching tab2 rows:

SELECT coll FROM tabl
WHERE EXISTS (SELECT 1 FROM tab2 WHERE col2 = tabl.col2);

9.16.2. IN

expression IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of IN is “true” if any
equal subquery row is found. The result is “false” if no equal row is found (including the special case
where the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of the IN construct will be null, not false. This is in accordance with
SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.
row_constructor IN (subquery)

The left-hand side of this form of IN is a row constructor, as described in Section 4.2.11. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result. The result of 1N is “true” if any equal subquery row is found. The result is “false” if no
equal row is found (including the special case where the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is
unknown (null). If all the row results are either unequal or null, with at least one null, then the result of IN
is null.

9.16.3. NOT IN

expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of NOT IN is “true”
if only unequal subquery rows are found (including the special case where the subquery returns no rows).
The result is “false” if any equal row is found.

187



Chapter 9. Functions and Operators

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of the NOT IN construct will be null, not true. This is in accordance
with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor NOT IN (subquery)

The left-hand side of this form of NOT IN is a row constructor, as described in Section 4.2.11. The right-
hand side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result. The result of NOT 1IN is “true” if only unequal subquery rows are found (including the
special case where the subquery returns no rows). The result is “false” if any equal row is found.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is
unknown (null). If all the row results are either unequal or null, with at least one null, then the result of
NOT 1IN isnull.

9.16.4. ANY/SOME

expression operator ANY (subquery)

expression operator SOME (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result is
“false” if no true result is found (including the special case where the subquery returns no rows).

SOME is a synonym for ANY. IN is equivalent to = ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator’s result,
the result of the ANY construct will be null, not false. This is in accordance with SQL’s normal rules for
Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor operator ANY (subquery)

row_constructor operator SOME (subquery)

The left-hand side of this form of ANY is a row constructor, as described in Section 4.2.11. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given operator. Presently, only = and <> operators are allowed in row-wise
ANY constructs. The result of ANY is “true” if any equal or unequal row is found, respectively. The result
is “false” if no such row is found (including the special case where the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is

188



Chapter 9. Functions and Operators

unknown (null). If there is at least one null row result, then the result of ANY cannot be false; it will be
true or null.

9.16.5. ALL

expression operator ALL (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ALL is “true” if all rows yield true (including the special
case where the subquery returns no rows). The result is “false” if any false result is found.

NOT 1IN isequivalent to <> ALL.

Note that if there are no failures but at least one right-hand row yields null for the operator’s result, the
result of the ALL construct will be null, not true. This is in accordance with SQL’s normal rules for Boolean
combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.
row_constructor operator ALL (subquery)

The left-hand side of this form of ALL is a row constructor, as described in Section 4.2.11. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given operator. Presently, only = and <> operators are allowed in row-wise
ALL queries. The result of ALL is “true” if all subquery rows are equal or unequal, respectively (including
the special case where the subquery returns no rows). The result is “false” if any row is found to be unequal
or equal, respectively.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is
unknown (null). If there is at least one null row result, then the result of ALL cannot be true; it will be false
or null.

9.16.6. Row-wise Comparison

row_constructor operator (subquery)

The left-hand side is a row constructor, as described in Section 4.2.11. The right-hand side is a paren-
thesized subquery, which must return exactly as many columns as there are expressions in the left-hand
row. Furthermore, the subquery cannot return more than one row. (If it returns zero rows, the result is
taken to be null.) The left-hand side is evaluated and compared row-wise to the single subquery result
row. Presently, only = and <> operators are allowed in row-wise comparisons. The result is “true” if the
two rows are equal or unequal, respectively.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal

189



Chapter 9. Functions and Operators

if any corresponding members are non-null and unequal; otherwise the result of the row comparison is
unknown (null).

9.17. Row and Array Comparisons

This section describes several specialized constructs for making multiple comparisons between groups
of values. These forms are syntactically related to the subquery forms of the previous section, but do
not involve subqueries. The forms involving array subexpressions are PostgreSQL extensions; the rest are
SQL-compliant. All of the expression forms documented in this section return Boolean (true/false) results.

9.17.1. IN

expression IN (valuel[, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand ex-
pression’s result is equal to any of the right-hand expressions. This is a shorthand notation for

expression = valuel
OR
expression = valueZl
OR

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of the IN construct will be null, not false. This is in accordance
with SQL’s normal rules for Boolean combinations of null values.

9.17.2. NOT IN

expression NOT IN (valuel, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand ex-
pression’s result is unequal to all of the right-hand expressions. This is a shorthand notation for

expression <> valuel
AND
expression <> value2
AND

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of the NOT IN construct will be null, not true as one might
naively expect. This is in accordance with SQL’s normal rules for Boolean combinations of null values.

190



Chapter 9. Functions and Operators

Tip: x NOT IN y is equivalent to NOT (x IN y) in all cases. However, null values are much more
likely to trip up the novice when working with noT 1N than when working with 1n. It's best to express
your condition positively if possible.

9.17.3. ANY/SOME (array)

expression operator ANY (array expression)

expression operator SOME (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand expres-
sion is evaluated and compared to each element of the array using the given operator, which must yield
a Boolean result. The result of ANY is “true” if any true result is obtained. The result is “false” if no true
result is found (including the special case where the array has zero elements).

SOME is a synonym for ANY.

9.17.4. aLL (array)

expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand expres-
sion is evaluated and compared to each element of the array using the given operator, which must yield
a Boolean result. The result of ALL is “true” if all comparisons yield true (including the special case where
the array has zero elements). The result is “false” if any false result is found.

9.17.5. Row-wise Comparison

row_constructor operator row_constructor

Each side is a row constructor, as described in Section 4.2.11. The two row values must have the same
number of fields. Each side is evaluated and they are compared row-wise. Presently, only = and <>
operators are allowed in row-wise comparisons. The result is “true” if the two rows are equal or unequal,
respectively.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of the row comparison is
unknown (null).

row_constructor IS DISTINCT FROM row_constructor

This construct is similar to a <> row comparison, but it does not yield null for null inputs. Instead, any
null value is considered unequal to (distinct from) any non-null value, and any two nulls are considered
equal (not distinct). Thus the result will always be either true or false, never null.

row_constructor IS NULL

191



Chapter 9. Functions and Operators

row_constructor IS NOT NULL

These constructs test a row value for null or not null. A row value is considered not null if it has at least
one field that is not null.

9.18. Set Returning Functions

This section describes functions that possibly return more than one row. Currently the only functions in
this class are series generating functions, as detailed in Table 9-38.

Table 9-38. Series Generating Functions

Function Argument Type Return Type Description
generate_series (start|,int or bigint setof int or setof Generate a series of
stop) bigint (same as values, from start to
argument type) stop with a step size of
one
generate_series (start],int or bigint setof int or setof Generate a series of
stop, step) bigint (same as values, from start to
argument type) stop with a step size of
step

When step is positive, zero rows are returned if start is greater than stop. Conversely, when step is
negative, zero rows are returned if start is less than stop. Zero rows are also returned for NULL inputs.
It is an error for step to be zero. Some examples follow:

select » from generate_series(2,4);
generate_series

(3 rows)

select » from generate_series(5,1,-2);
generate_series

(3 rows)

select * from generate_series (4,3);
generate_series

select current_date + s.a as dates from generate_series(0,14,7) as s(a);

192



Chapter 9. Functions and Operators

2004-02-05
2004-02-12
2004-02-19
(3 rows)

9.19. System Information Functions

Table 9-39 shows several functions that extract session and system information.

Table 9-39. Session Information Functions

Name Return Type Description
current_database () name name of current database
current_schema () name name of current schema
current_schemas (boolean) name [ ] names of schemas in search path
optionally including implicit
schemas
current_user name user name of current execution
context
inet_client_addr () inet address of the remote connection
inet_client_port () int port of the remote connection
inet_server_addr () inet address of the local connection
inet_server_port () int port of the local connection
session_user name SeSSiOH user name
pg_postmaster_start_time () timestamp with time zone postmasters&ﬂtﬁnm
user name equivalent to current_user
version () text PostgreSQL version information

The session_user is normally the user who initiated the current database connection; but superusers
can change this setting with SET SESSION AUTHORIZATION. The current_user is the user identifier
that is applicable for permission checking. Normally, it is equal to the session user, but it can be changed
with SET ROLE. Tt also changes during the execution of functions with the attribute SECURITY DEFINER.
In Unix parlance, the session user is the “real user” and the current user is the “effective user”.

Note: current_user, session_user, and user have special syntactic status in SQL: they must be

called without trailing parentheses.

current_schema returns the name of the schema that is at the front of the search path (or a null value
if the search path is empty). This is the schema that will be used for any tables or other named objects
that are created without specifying a target schema. current_schemas (boolean) returns an array of

193




Chapter 9. Functions and Operators

the names of all schemas presently in the search path. The Boolean option determines whether or not
implicitly included system schemas such as pg_catalog are included in the search path returned.

Note: The search path may be altered at run time. The command is:

SET search_path TO schema [, schema,

inet_client_addr returns the IP address of the current client, and inet_client_port returns the
port number. inet_server_addr returns the IP address on which the server accepted the current con-
nection, and inet_server_port returns the port number. All these functions return NULL if the current
connection is via a Unix-domain socket.

pg_postmaster_start_time returns the timestamp with time zone when the postmaster

started.

version returns a string describing the PostgreSQL server’s version.

Table 9-40 lists functions that allow the user to query object access privileges programmatically. See
Section 5.6 for more information about privileges.

Table 9-40. Access Privilege Inquiry Functions

Name Return Type Description
has_table_privilege (user, boolean does user have privilege for table
table, privilege)

has_table_privilege (table, |boolean does current user have privilege
privilege) for table
has_database_privilege (user,|boolean does user have privilege for
database, privilege) database
has_database_privilege (databglseplean does current user have privilege
privilege) for database
has_function_privilege (user,|boolean does user have privilege for
function, privilege) function
has_function_privilege (functfibaplean does current user have privilege
privilege) for function
has_language_privilege (user,|boolean does user have privilege for
language, privilege) language
has_language_privilege (langugleplean does current user have privilege
privilege) for language

pg_has_role (user, role, boolean does user have privilege for role
privilege)

pg_has_role (role, boolean does current user have privilege
privilege) for role
has_schema_privilege (user, |boolean does user have privilege for

schema, privilege)

schema

194




Chapter 9. Functions and Operators

Name Return Type Description
has_schema_privilege (schema,|boolean doescunentuserhavepﬁvﬂege
privilege) for schema
has_tablespace_privilege (userhoolean doesuserhavepﬁvﬂegefor
tablespace, privilege) tabkmpace
has_tablespace_privilege (tabllespdesn does current user have privilege
privilege) for tablespace

has_table_privilege checks whether a user ca